Skip to main content

Principles of Thermal Ablation

  • Chapter
  • First Online:
Radiation Therapy for Liver Tumors

Abstract

Within the field of local–regional hepatic therapies, the area of thermal ablation plays an important role. First conceptualized in the 1840s, thermal ablation greatly expanded after the advent of cross-sectional imaging. These techniques are generally used for patients with unresectable and borderline resectable disease, which may be due to the size, number, or location of the liver tumors, or for patients judged inoperable due to the patient’s poor health. These methods have thus become an integral part of the treatment armamentarium for liver-directed therapy. All techniques presented in this chapter can be used for either primary or metastatic hepatic malignancies, and can also be used in combination with other therapies to maximize effectiveness. Thermal ablation methods are divided into hyper- and hypothermic techniques, depending on the temperature delivered. They are further divided based on the method used for developing a temperature differential. Hyperthermic techniques include radiofrequency ablation (RFA), microwave ablation (MWA), interstitial laser photocoagulation (ILP), and high-intensity focused ultrasound (HIFU), whereas cryoablation is the sole technique that uses hypothermia. Below is a description of each of these ablation methods and how they ablate tumor, along with a review of the technical and clinical considerations that must be made when deciding to employ one of these modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rossmanna C, Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit Rev Biomed Eng. 2014;42(6):467–92.

    Article  PubMed  Google Scholar 

  2. Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14(3):199–208.

    Article  CAS  PubMed  Google Scholar 

  3. d’Arsonval M. Action physiologique des courants alternatives. C R Soc Biol. 1891;(43):283–6.

    Google Scholar 

  4. McGahan JP, Browning PD, Brock JM, Tesluk H. Hepatic ablation using radiofrequency electrocautery. Invest Radiol. 1990;25(3):267–70.

    Article  CAS  PubMed  Google Scholar 

  5. Rossi S, Fornari F, Pathies C, Buscarini L. Thermal lesions induced by 480 KHz localized current field in guinea pig and pig liver. Tumori. 1990;76(1):54–7.

    CAS  PubMed  Google Scholar 

  6. Organ LW. Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol. 1976–1977;39(2):69–76.

    Google Scholar 

  7. Saied A, Katz SC, Espat NJ. Regional hepatic therapies: an important component in the management of colorectal cancer liver metastases. Hepatobiliary Surg Nutr. 2013;2(2):97–107.

    PubMed  PubMed Central  Google Scholar 

  8. Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer. 2000;88(11):2452–63.

    Article  CAS  PubMed  Google Scholar 

  9. Haen SP, Pereira PL, Salih HR, Rammensee HG, Gouttefangeas C. More than just tumor destruction: immunomodulation by thermal ablation of cancer. Clin Dev Immunol. 2011;2011:160250.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yi B, Somasundar P, Espat NJ. Novel laparoscopic bipolar radiofrequency energy technology for expedited hepatic tumour ablation. HPB (Oxford). 2009;11(2):135–9.

    Article  Google Scholar 

  11. LeVeen RF. Laser hyperthermia and radiofrequency ablation of hepatic lesions. Semin Interv Radiol. 1997;14:313–24.

    Google Scholar 

  12. Goldberg SN, Gazelle GS, Solbiati L, Rittman WJ, Mueller PR. Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol. 1996;3(8):636–44.

    Article  CAS  PubMed  Google Scholar 

  13. Eisele RM. Advances in local ablation of malignant liver lesions. World J Gastroenterol. 2016;22(15):3885–91.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ueno S, Sakoda M, Kubo F, Hiwatashi K, Tateno T, Baba Y, et al. Surgical resection versus radiofrequency ablation for small hepatocellular carcinomas within the Milan criteria. J Hepatobiliary Pancreat Surg. 2009;16(3):359–66.

    Article  PubMed  Google Scholar 

  15. Huang J, Yan L, Cheng Z, Wu H, Du L, Wang J, et al. A randomized trial comparing radiofrequency ablation and surgical resection for HCC conforming to the Milan criteria. Ann Surg. 2010;252(6):903–12.

    Article  PubMed  Google Scholar 

  16. Chen MS, Li JQ, Zheng Y, Guo RP, Liang HH, Zhang YQ, et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg. 2006;243(3):321–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Howenstein MJ, Sato KT. Complications of radiofrequency ablation of hepatic, pulmonary, and renal neoplasms. Semin Intervent Radiol. 2010;27(3):285–95.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mendiratta-Lala M, Brook OR, Midkiff BD, Brennan DD, Thornton E, Faintuch S, et al. Quality initiatives: strategies for anticipating and reducing complications and treatment failures in hepatic radiofrequency ablation. Radiographics. 2010 Jul–Aug;30(4):1107–22.

    Google Scholar 

  19. Langberg JJ, Wonnell T, Chin MC, Finkbeiner W, Scheinman M, Stauffer P. Catheter ablation of the atrioventricular junction using a helical microwave antenna: a novel means of coupling energy to the endocardium. Pacing Clin Electrophysiol PACE. 1991;14(12):2105–13.

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann R, Rempp H, Erhard L, Blumenstock G, Pereira PL, Claussen CD, Clasen S. Comparison of four microwave ablation devices: an experimental study in ex vivo bovine liver. Radiology. 2013;268(1):89–97.

    Article  PubMed  Google Scholar 

  21. Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S192–203.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yu NC, Raman SS, Kim YJ, Lassman C, Chang X, Lu DSK. Microwave liver ablation: influence of hepatic vein size on heat-sink effect in a porcine model. J Vasc Interv Radiol JVIR. 2008;19(7):1087–92.

    Article  PubMed  Google Scholar 

  23. Brace CL, Laeseke PF, Sampson LA, Frey TM, van der Weide DW, Lee FT. Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model. Radiology. 2007;244(1):151–6.

    Article  PubMed  Google Scholar 

  24. Liang P, Wang Y, Yu X, Dong B. Malignant liver tumors: treatment with percutaneous microwave ablation–complications among cohort of 1136 patients. Radiology. 2009;251(3):933–40.

    Article  PubMed  Google Scholar 

  25. Hinshaw JL, Lubner MG, Ziemlewicz TJ, Lee FT Jr, Brace CL. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation–what should you use and why? Radiographics. 2014 Sep-Oct;34(5):1344–62.

    Google Scholar 

  26. Yu NC, Lu DS, Raman SS, Dupuy DE, Simon CJ, Lassman C, et al. Hepatocellular carcinoma: microwave ablation with multiple straight and loop antenna clusters–pilot comparison with pathologic findings. Radiology. 2006;239(1):269–75.

    Article  PubMed  Google Scholar 

  27. Trembly BS, Douple EB, Ryan TP, Hoopes PJ. Effect of phase modulation on the temperature distribution of a microwave hyperthermia antenna array in vivo. Int J Hyperth Off J Eur Soc Hyperthermic Oncol North Am Hyperth Group. 1994;10(5):691–705.

    Article  CAS  Google Scholar 

  28. Yu Z, Liu W, Fan L, Shao J, Huang Y, Si X. The efficacy and safety of percutaneous microwave coagulation by a new microwave delivery system in large hepatocellular carcinomas: four case studies. Int J Hyperth. 2009;25(5):392–8.

    Article  Google Scholar 

  29. DeBenedectis CM, Beland MD, Dupuy DE, Mayo-Smith WW. Utility of iodinated contrast medium in hydrodissection fluid when performing renal tumor ablation. J Vasc Interv Radiol. 2010;21(5):745–7.

    Article  PubMed  Google Scholar 

  30. Goldberg SN, Ahmed M, Gazelle GS, Kruskal JB, Huertas JC, Halpern EF, et al. Radiofrequency thermal ablation with NaCl solution injection: effect of electrical conductivity on tissue heating and coagulation–-phantom and porcine liver study. Radiology. 2001;219(1):157–65.

    Article  CAS  PubMed  Google Scholar 

  31. Bown SG. Phototherapy in tumors. World J Surg. 1983;7(6):700–9.

    Article  CAS  PubMed  Google Scholar 

  32. Gough-Palmer AL, Gedroyc WM. Laser ablation of hepatocellular carcinoma–a review. World J Gastroenterol. 2008;14(47):7170–4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ivarsson K, Olsrud J, Sturesson C, Möller PH, Persson BR, Tranberg KG. Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four-fibers. Lasers Surg Med. 1998;22(2):86–96.

    Article  CAS  PubMed  Google Scholar 

  34. Roggan A, Mesecke-von Rheinbaben I, Knappe V, Vogl T, Mack MG, Germer C, et al. Applicator development and irradiation planning in laser-induced thermotherapy (LITT). Biomed Tech (Berl). 1997;42(Suppl):332–3.

    Article  Google Scholar 

  35. Heisterkamp J, van Hillegersberg R, Mulder PG, Sinofsky EL, IJzermans JN. Importance of eliminating portal flow to produce large intrahepatic lesions with interstitial laser coagulation. Br J Surg. 1997 Sep;84(9):1245–8.

    Google Scholar 

  36. Arienti V, Pretolani S, Pacella CM, Magnolfi F, Caspani B, Francica G, et al. Complications of laser ablation for hepatocellular carcinoma: a multicenter study. Radiology. 2008;246(3):947–55.

    Article  PubMed  Google Scholar 

  37. Vogl TJ, Straub R, Eichler K, Söllner O, Mack MG. Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy–local tumor control rate and survival data. Radiology. 2004;230(2):450–8.

    Article  PubMed  Google Scholar 

  38. Vogl TJ, Straub R, Eichler K, Woitaschek D, Mack MG. Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: experience with complications in 899 patients (2,520 lesions). Radiology. 2002;225(2):367–77.

    Article  PubMed  Google Scholar 

  39. Di Costanzo GG, Francica G, Pacella CM. Laser ablation for small hepatocellular carcinoma: state of the art and future perspectives. World J Hepatol. 2014;6(10):704–15.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Diana M, Schiraldi L, Liu YY, Memeo R, Mutter D, Pessaux P, Marescaux J. High intensity focused ultrasound (HIFU) applied to hepato-bilio-pancreatic and the digestive system—current state of the art and future perspectives. Hepatobiliary Surg Nutr 2015, Epub ahead of print.

    Google Scholar 

  41. Zhou YF. High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol. 2011;2(1):8–27.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH. High-intensity focused ultrasound: current potential and oncologic applications. AJR Am J Roentgenol. 2008;190(1):191–9.

    Article  PubMed  Google Scholar 

  43. Arnott J. Practical illustrations of the remedial efficacy of a very low or anesthetic temperature in cancer. Lancet. 1850;2:257–9.

    Article  Google Scholar 

  44. Niu LZ, Li JL, Xu KC. Percutaneous cryoablation for liver cancer. J Clin Transl Hepatol. 2014;2(3):182–8.

    PubMed  PubMed Central  Google Scholar 

  45. Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol. 1984;247(3 Pt 1):C125–42.

    CAS  PubMed  Google Scholar 

  46. Mazur P, Rall WF, Leibo SP. Kinetics of water loss and the likelihood of intracellular freezing in mouse ova. Influence of the method of calculating the temperature dependence of water permeability. Cell Biophys. 1984;6(3):197–213.

    Article  CAS  PubMed  Google Scholar 

  47. Baust JG, Gage AA. The molecular basis of cryosurgery. BJU Int. 2005;95(9):1187–91.

    Article  PubMed  Google Scholar 

  48. Weber SM, Lee FT, Chinn DO, Warner T, Chosy SG, Mahvi DM. Perivascular and intralesional tissue necrosis after hepatic cryoablation: results in a porcine model. Surgery. 1997;122(4):742–7.

    Article  CAS  PubMed  Google Scholar 

  49. Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology. 2009;58(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  50. den Brok MHMGM, Sutmuller RPM, Nierkens S, Bennink EJ, Frielink C, Toonen LWJ, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer. 2006;95(7):896–905.

    Article  Google Scholar 

  51. Hinsaw JL, Lee FT Jr. Cryoablation for liver cancer. Tech Vasc Interv Radiol. 2007;10(1):47–57.

    Article  Google Scholar 

  52. Pearson AS, Izzo F, Fleming RY, Ellis LM, Delrio P, Roh MS, et al. Intraoperative radiofrequency ablation or cryoablation for hepatic malignancies. Am J Surg. 1999;178(6):592–9.

    Article  CAS  PubMed  Google Scholar 

  53. Xu KC, Niu LZ, He WB, Hu YZ, Zuo JS. Percutaneous cryosurgery for the treatment of hepatic colorectal metastases. World J Gastroenterol. 2008;14(9):1430–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Littrup PJ, Aoun HD, Adam B, Krycia M, Prus M, Shields A. Percutaneous cryoablation of hepatic tumors: long-term experience of a large U.S. series. Abdom Radiol (NY). 2016 Apr;41(4):767–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille L. Stewart MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stewart, C.L., Edil, B.H., Ryu, R.K., Reza Rajebi, M. (2017). Principles of Thermal Ablation. In: Meyer, J., Schefter, T. (eds) Radiation Therapy for Liver Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-54531-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54531-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54530-1

  • Online ISBN: 978-3-319-54531-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics