Skip to main content

Quantifying Cytoskeletal Morphology in Endothelial Cells to Enable Mechanical Analysis

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine
  • 746 Accesses

Abstract

Wall shear stress induced remodelling of endothelial cell morphology is a focal cause of atherosclerosis. While the force distribution within endothelial cells has been quantified using computational modelling, no studies have included an image-informed cytoskeleton, nor have any studies examined the effect of population variation of the cytoskeleton. In this paper we quantified the spatial variation of the cytoskeleton and primary cilium in a population of endothelial cells to enable future mechanical analysis.

This was achieved using custom spatial descriptors for the microtubule and actin filament networks and the primary cilium. Using these descriptors our quantitative findings are in close agreement with previous findings of actin distribution (occupying a planar layer in the cell <20% of total cell height, at the periphery in the xy plane), and microtubule distribution (median of 38 microtubules per cell, in a tree-like network with branching tubules within 30° of the parent tubule).

Our set of descriptors improve on previous cell spatial descriptors by representing specific cells with sufficient accuracy to enable current modelling approaches. Additionally, the descriptors enable the generation of virtual cells with a cytoskeleton and primary cilium characteristic of the entire population. Thus reducing the computational cost needed to represent the entire population, without significant information loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies PF, Polacek DC, Shi C, Helmke BP (2002) The convergence of haemodynamics, genomics, and endothelial structure in studies of the focal origin of atherosclerosis. Biorheology 39(3):299–306

    Google Scholar 

  2. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6(1):16–26

    Article  Google Scholar 

  3. Chiu J, Wang DL, Chien S, Skalak R, Usami S (1998) Effects of disturbed flow on endothelial cells. J Biomech Eng 120(1):2–8

    Article  Google Scholar 

  4. Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Gimbrone MA (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A 83(7):2114–2117. doi:10.1073/pnas.83.7.2114

    Article  Google Scholar 

  5. Galbraith CG, Skalak R, Chien S (1998) Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskeleton 40(4):317–330

    Article  Google Scholar 

  6. Helmlinger G, Geiger RV, Schreck S, Nerem RM (1991) Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng 113(2):123–131

    Article  Google Scholar 

  7. Levesque MJ, Sprague EA, Schwartz CJ, Nerem RM (1989) The influence of shear stress on cultured vascular endothelial cells: the stress response of an anchorage-dependent mammalian cell. Biotechnol Prog 5(1):1–8

    Article  Google Scholar 

  8. Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103(3):172–176

    Article  Google Scholar 

  9. Rouleau L, Farcas M, Tardif J, Mongrain R, Leask RL (2010) Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients. J Biomech Eng 132(8):081013–081013

    Article  Google Scholar 

  10. Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292(3):H1209–H1224

    Article  Google Scholar 

  11. Ferko M, Bhatnagar A, Garcia M, Butler PJ (2007) Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells. Ann Biomed Eng 35(2):208–223

    Article  Google Scholar 

  12. Dabagh M, Jalali P, Butler PJ, Tarbell JM (2014) Shear-induced force transmission in a multicomponent, multicell model of the endothelium. J R Soc Interface 11(98):20140431

    Article  Google Scholar 

  13. Lim YC, Cooling MT, Long DS (2014) Computational models of the primary cilium and endothelial mechanotransmission. Biomech Model Mechanobiol 14:665–678

    Article  Google Scholar 

  14. Lim YC, McGlashan S, Cooling MT, Long DS (2016) Mechanical models of endothelial mechanotransmission based on a population of cells. In: Joldes GR, Doyle B, Wittek A, PMF N, Miller K (eds) Computational biomechanics for medicine. Springer, New York

    Google Scholar 

  15. Chen TJ, Wu CC, Su FC (2012) Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: a review. Med Eng Phys 34(10):1375–1386

    Article  Google Scholar 

  16. Lim YC, McGlashan S, Cooling MT, Long DS (2015) Culture and detection of primary cilia in endothelial cell models. Cilia 4(1):11

    Article  Google Scholar 

  17. Buck TE, Li J, Rohde GK, Murphy RF (2012) Toward the virtual cell: automated approaches to building models of subcellular organization “learned” from microscopy images. BioEssays 34(9):791–799

    Article  Google Scholar 

  18. Peng T, Murphy RF (2011) Image-derived, three-dimensional generative models of cellular organization. Cytometry A 79(5):383–391

    Article  Google Scholar 

  19. Zhao T, Murphy RF (2007) Automated learning of generative models for subcellular location: building blocks for systems biology. Cytometry A 71(12):978–990

    Article  Google Scholar 

  20. Dougherty R (2005) Extensions of DAMAS and benefits and limitations of deconvolution in beamforming. Am Inst Aeronaut Astronaut. doi:10.2514/6.2005-2961

    Google Scholar 

  21. Longair MH, Baker DA, Armstrong JD (2011) Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27(17): 2453–2454

    Article  Google Scholar 

  22. Shariff A, Murphy RF, Rohde GK (2011) Automated estimation of microtubule model parameters from 3-D live cell microscopy images. In: Anonymous biomedical imaging: from nano to macro, 2011 IEEE international symposium on, p. 1330

    Google Scholar 

  23. Li J, Shariff A, Wiking M, Lundberg E, Rohde GK, Murphy RF (2012) Estimating microtubule distributions from 2D immunofluorescence microscopy images reveals differences among human cultured cell lines. PLoS One 7(11):e50292

    Article  Google Scholar 

  24. Hagiwara H, Ohwada N, Aoki T et al (2008) The primary cilia of secretory cells in the human oviduct mucosa. Med Mol Morphol 41(4):193–198

    Article  Google Scholar 

  25. Iomini C, Tejada K, Mo W et al (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164(6):811–817

    Article  Google Scholar 

  26. Van der Heiden K, Groenendijk BCW, Hierck BP, Krams R, de Com R, Cheng C, Baiker M, Pourquie MJBM, Alkemade FE, deRuiter MC, Gittenberger-de Groot AC, Poelmann RE (2006) Monocilia on chicken embryonic endocardium in low shear stress areas. Dev Dyn 235(1):19–28

    Article  Google Scholar 

  27. Geerts WJC, Vocking K, Schoonen N, Haarbosch L, van Donselaar EG, Regan-Klapisz E, Post JA (2011) Cobblestone HUVECs: a human model system for studying primary ciliogenesis. J Struct Biol 176(3):350–359

    Article  Google Scholar 

  28. Khayyeri H, Barreto S, Lacroix D (2015) Primary cilia mechanics affects cell mechanosensation: a computational study. J Theor Biol 379:38–46

    Article  Google Scholar 

  29. Crisfield MA (1991) Non-linear finite element analysis of solids and structures volume 1: essentials. Wiley, New York

    MATH  Google Scholar 

  30. Crisfield MA (1997) Non-linear finite element analysis of solids and structures volume 2: advanced topics. Wiley, New York

    MATH  Google Scholar 

  31. Zienkiewicz OC, Taylor RL (2000) The finite element method: the basis. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  32. Bel Hadj Ali N, Rhode-Barbarigos L, Smith IFC (2011) Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm. Int J Solids Struct 48(5):637–647

    Article  MATH  Google Scholar 

  33. Estrada GG, Bungartz H-J, Mohrdieck C (2006) Numerical form-finding of tensegrity structures. Int J Solids Struct 43(22–23):6855–6868

    Article  MATH  Google Scholar 

  34. Paul C, Lipson H, Cuevas FJV (2005) Evolutionary form-finding of tensegrity structures. In: GECCO ‘05 Proceedings of the 7th annual conference on Genetic and evolutionary computation on, pp. 3–10

    Google Scholar 

  35. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Investig Dermatol 99(6):683–690

    Article  Google Scholar 

Download references

Acknowledgments

HMEC-1s were kindly provided by Dr. Edwin Ades, Mr. Francisco J. Candal (CDC, Atlanta GA, USA) and Dr. Thomas Lawley (Emory University, Atlanta, GA, USA) NCEZID-R147589-00 [35]. The authors would also like to acknowledge Dr. Sue McGlashan, Ms. Hilary Holloway and Ms. Jacqui Ross from the Biomedical Imaging Research Unit, University of Auckland for assistance in microscope training and image acquisition. This work was supported by a University of Auckland Faculty Research Development Fund grant (3702516, D.S.L.). The first author is grateful for financial support from the University of Kassel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chung Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lim, Y.C., Kuhl, D., Cooling, M.T., Long, D.S. (2017). Quantifying Cytoskeletal Morphology in Endothelial Cells to Enable Mechanical Analysis. In: Wittek, A., Joldes, G., Nielsen, P., Doyle, B., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-54481-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54481-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54480-9

  • Online ISBN: 978-3-319-54481-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics