Skip to main content

Magnesium, Copper and Cobalt

  • Chapter
  • First Online:
Metals and the Biology and Virulence of Brucella

Abstract

Magnesium, copper and cobalt are essential micronutrients for Brucella strains, but relatively little is known about how the brucellae acquire the levels of these metals they need and avoid their toxicity. This chapter will review the information that is available in the literature and can be derived from surveys of currently available genome sequences regarding magnesium, copper and cobalt homeostasis in Brucella.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard MES, Tree JJ, Holden JA, Simpfendorfer KR, Wijburg OLC, Strugnell RA, Schembri MA, Sweet MJ, Jennings MP, McEwan AG (2010) The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect Immun 78:2312–2319

    Article  CAS  Google Scholar 

  • Altenbern RA, Williams DR, Ginoza HS (1959) Effect of cobalt on population changes in Brucella abortus. J Bacteriol 77:509

    CAS  Google Scholar 

  • Anderson ES, Paulley JT, Gaines JM, Valderas MW, Martin DW, Menscher E, Brown TD, Burns CS, Roop RM II (2009) The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 77:3466–3474

    Article  CAS  Google Scholar 

  • Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

    Article  CAS  Google Scholar 

  • Argüello JM, Raimunda D, Padilla-Benavides T (2013) Mechanisms of copper homeostasis in bacteria. Front Cell Infect Micrbiol 3:e73

    Google Scholar 

  • Barras F, Fontecave M (2011) Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance. Metallomics 3:1130–1134

    Article  CAS  Google Scholar 

  • Blanc-Potard AB, Groisman EA (1997) The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16:5376–5385

    Article  CAS  Google Scholar 

  • Bleichert P, Santo CE, Hanczaruk M, Meyer H, Grass G (2014) Inactivation of bacterial and viral biothreat agents on metallic copper surfaces. Biometals 27:1179–1189

    Article  CAS  Google Scholar 

  • Blériot C, Effantin G, Lagarde F, Mandrand-Berthelot MA, Rodrigue A (2011) RcnB is a perisplamic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli. J Bacteriol 193:3785–3793

    Article  Google Scholar 

  • Cadieux N, Bradbeer C, Reeger-Schneider E, Koster W, Mohanty AK, Wiener MC, Kadner RJ (2002) Identification of the periplasmic cobalamin-binding protein BtuF of Escherichia coli. J Bacteriol 184:706–717

    Article  CAS  Google Scholar 

  • Celli J (2015) The changing nature of the Brucella-containing vacuole. Cell Microbiol 17:951–958

    Article  CAS  Google Scholar 

  • Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragón A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    Article  CAS  Google Scholar 

  • Cheng J, Poduska B, Morton RA, Finan TM (2011) An ABC-type cobalt transport system is essential for growth of Sinorhizobium meliloti at trace metal concentrations. J Bacteriol 193:4405–4416

    Article  CAS  Google Scholar 

  • Childs JD, Smith DA (1969) New methionine structural gene in Salmonella typhimurium. J Bacteriol 100:377–381

    CAS  Google Scholar 

  • Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT (1999) The Enterococcus hirae copper chaperone CopZ delivers copper (I) to the CopY repressor. FEBS Lett 445:27–30

    Article  CAS  Google Scholar 

  • Cowles JR, Evans HJ, Russell SA (1969) B12 coenzyme-dependent ribonucleotide reductase in Rhizobium species and the effects of cobalt deficiency on the activity of the enzyme. J Bacteriol 97:1460–1465

    CAS  Google Scholar 

  • De Groote MA, Oschner UA, Shiloh MU, Nathan C, McCord JM, Dinauer MC, Libby SJ, Vazquez-Torres A, Xu Y, Fang FC (1997) Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA 94:13997–14001

    Article  Google Scholar 

  • Delrue RM, Lestrate P, Tibor A, Letesson JJ, De Bolle X (2004) Brucella pathogenesis, genes identified from random large-scale screens. FEMS Microbiol Lett 231:1–12

    Article  CAS  Google Scholar 

  • DeVeaux LC, Kadner RJ (1985) Transport of vitamin B12 in Escherichia coli: cloning of the btuCD region. J Bacteriol 162:888–896

    CAS  Google Scholar 

  • Dokpikul T, Chaoprasid P, Saninjuk K, Sirirakphaisarn S, Johnrod J, Nookabkaew S, Sukchawalit R, Mongkolsuk S (2016) Regulation of the cobalt/nickel efflux operon dmeRF in Agrobacterium tumefaciens and a link between the iron-sensing regulator RirA and cobalt/nickel resistance. Appl Environ Microbiol 82:4732–4742

    Article  CAS  Google Scholar 

  • Dorrell N, Spencer S, Foulongne V, Guigue-Talet P, O’Callaghan D, Wren BW (1998) Identification, cloning and initial characterization of FeuPQ in Brucella suis: a new sub-family of two-component regulatory systems. FEMS Microbiol Lett 162:143–150

    Article  CAS  Google Scholar 

  • Evenson MA, Gerhardt P (1955) Nutrition of brucellae: utilization of iron, magnesium and manganese for growth. Proc Soc Exp Biol Med 89:678–680

    Article  CAS  Google Scholar 

  • Foster AW, Osman D, Robinson NJ (2014) Metal preferences and metallation. J Biol Chem 289:28095–28103

    Article  CAS  Google Scholar 

  • Gee JM, Valderas MW, Kovach ME, Grippe VK, Robertson GT, Ng WL, Richardson JM, Winkler ME, Roop RM II (2005) The Brucella Cu, Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect Immun 73:2873–2880

    Article  CAS  Google Scholar 

  • Glockner AB, Jüngst A, Zumft WG (1993) Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd 1-free background (NirS-) of Pseudomonas stutzeri. Arch Microbiol 160:18–26

    CAS  Google Scholar 

  • González-Guerrero M, Argüello JM (2008) Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci USA 105:5992–5997

    Google Scholar 

  • Gort AS, Ferber DM, Imlay JA (1999) The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol Microbiol 32:179–191

    Article  CAS  Google Scholar 

  • Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Comm 286:902–908

    Article  CAS  Google Scholar 

  • Groisman EA, Hollands J, Kriner MA, Lee EJ, Park SY, Pontes MH (2013) Bacterial Mg2+ homeostasis, transport and virulence. Annu Rev Genet 47:625–646

    Article  CAS  Google Scholar 

  • Haine V, Dozot M, Dornand J, Letesson JJ, De Bolle X (2006) NnrA is required for full virulence and regulates several Brucella melitensis denitrification genes. J Bacteriol 188:1615–1619

    Article  CAS  Google Scholar 

  • Heller K, Mann BJ, Kadner RJ (1985) Cloning and expression of the gene for the vitamin B12 receptor protein in the outer membrane of Escherichia coli. J Bacteriol 161:896–903

    CAS  Google Scholar 

  • Hmiel SP, Snavely MD, Miller CG, Maguire ME (1986) Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol 168:1444–1450

    Article  CAS  Google Scholar 

  • Hmiel SP, Snavely MD, Florer JB, Maguire ME, Miller CG (1989) Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171:4742–4751

    Article  CAS  Google Scholar 

  • Huston WM, Jennings MP, McEwan AG (2002) The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition. Mol Microbiol 45:1741–1750

    Article  CAS  Google Scholar 

  • Iwig JS, Rowe JL, Chivers PT (2006) Nickel homeostasis in Escherichia coli—the rcnR-rcnA efflux pathway and its linkage to NikR function. Mol Microbiol 62:252–262

    Article  CAS  Google Scholar 

  • Jiménez de Bagüés MP, Loisel-Meyer S, Liautard JP, Jubier-Maurin V (2007) Different roles of the two high-oxygen-affinity terminal oxidases of Brucella suis: cytochrome c oxidase, but not ubiquinol oxidase, is required for persistence in mice. Infect Immun 75:531–535

    Article  Google Scholar 

  • Johnson MDL, Kehl-Fie TE, Klein R, Kelly J, Burnham C, Mann B, Rosch JW (2015) Role of copper efflux in pneumococcal pathogenesis and resistance to macrophage-mediated immune clearance. Infect Immun 83:1684–1694

    Article  CAS  Google Scholar 

  • Köhler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz R, Liautard JP (2002) The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci USA 99:15711–15716

    Article  Google Scholar 

  • Ladomersky E, Petris MJ (2015) Copper tolerance and virulence in bacteria. Metallomics 7:957–964

    Article  CAS  Google Scholar 

  • Lavigne JP, O’Callaghan D, Blanc-Potard AB (2005) Requirement of MgtC for Brucella suis intramacrophagic growth: a potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg2+ environment. Infect Immun 73:3160–3163

    Article  CAS  Google Scholar 

  • Lawrence AD, Deery E, McLean KJ, Munro AW, Pickersgill RW, Rigby SEJ, Warren MJ (2008) Identification, characterization, and structure/function analysis of a corrin reductase involved in adenosylcobalamin biosynthesis. J Biol Chem 283:10813–10821

    Article  CAS  Google Scholar 

  • Lee EJ, Pontes MH, Groisman EA (2013) A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium’s own F1F0 ATP synthase. Cell 154:146–156

    Article  CAS  Google Scholar 

  • Lestrate P, Delrue RM, Danese I, Didembourg C, Taminiau B, Mertens P, De Bolle X, Tibor A, Tang CM, Letesson JJ (2000) Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol 38:543–551

    Article  CAS  Google Scholar 

  • Lohmeyer E, Schroder S, Pawlik G, Trasnea PI, Peters A, Daldal F, Koch HG (2012) The ScoI homologue SenC is a copper binding protein that interacts directly with the cbb 3 -type cytochrome oxidase in Rhodobacter capsulatus. Biochim Biophys Acta 1817:2005–2015

    Article  CAS  Google Scholar 

  • Lundqvist J, Elmlund D, Heldt D, Deery E, Söderberg CAG, Hansson M, Warren M, Al-Karadaghi S (2009) The AAA+ motor complex of subunits CobS and CobT of cobaltochelatase visualized by single particle electron microscopy. J Structural Biol 167:227–234

    Article  CAS  Google Scholar 

  • Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106:8344–8349

    Article  CAS  Google Scholar 

  • McCullough WG, Mills RC, Herbst EJ, Roessler WG, Brewer CR (1947) Studies on the nutritional requirements of Brucella suis. J Bacteriol 53:5–15

    CAS  Google Scholar 

  • Ojeda JF (2012) The bhuTUV and bhuO genes play vital roles in the ability of Brucella abortus to use heme as an iron source and are regulated in an iron-responsive manner by RirA and Irr. Doctoral dissertation, East Carolina University

    Google Scholar 

  • Osman D, Patterson CJ, Bailey K, Fisher K, Robinson NJ, Rigby SEJ, Cavet JS (2013) The copper supply pathway to a Salmonella Cu, Zn-superoxide dismutase (SodCII) involves P1B-type ATPase copper efflux and periplasmic CueP. Mol Microbiol 87:466–477

    Article  CAS  Google Scholar 

  • Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677

    Article  CAS  Google Scholar 

  • Papp-Wallace KM, Maguire ME (2008) Magnesium transport and magnesium homeostasis. EcoSal Plus 2013. doi:10.1128/ecosalplus.5.4.4.2

  • Park MH, Wong BB, Lusk JE (1976) Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology. J Bacteriol 126:1096–1103

    CAS  Google Scholar 

  • Piddington DL, Fang FC, Laessig T, Cooper AM, Orme IM, Buchmeier NA (2001) Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69:4980–4987

    Article  CAS  Google Scholar 

  • Pontes MH, Sevostyanova A, Groisman EA (2015a) When too much ATP is bad for protein synthesis. J Mol Biol 427:2586–2594

    Article  CAS  Google Scholar 

  • Pontes MH, Lee EJ, Choi J, Groisman EA (2015b) Salmonella promotes virulence by repressing cellulose production. Proc Natl Acad Sci USA 112:5183–5188

    Article  CAS  Google Scholar 

  • Preisig O, Zufferey R, Hennecke H (1996) The Bradyrhizobium japonicum fixGHIS genes are required for the formation of high-affinity cbb 3-type cytochrome oxidase. Arch Microbiol 165:297–305

    Article  CAS  Google Scholar 

  • Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu (I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97:652–656

    Article  CAS  Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2003) Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 278:41148–41159

    Article  CAS  Google Scholar 

  • Rodrigue A, Effantin G, Mandrand-Berthelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187:2912–2916

    Article  CAS  Google Scholar 

  • Roop RM II (2012) Metal acquisition and virulence in Brucella. Anim Health Res Rev 13:10–20

    Article  Google Scholar 

  • Roop RM II, Bellaire BH, Anderson ES, Paulley JT (2004) Iron metabolism in Brucella. In: López-Goñi I, Moriyón I (eds) Brucella—molecular and cellular biology. Horizon Bioscience, Norfolk, UK, pp 243–262

    Google Scholar 

  • Roop RM II, Anderson E, Ojeda J, Martinson D, Menscher E, Martin DW (2012) Metal acquisition by Brucella strains. In: López-Goñi I, O’Callaghan D (eds) Brucella—molecular microbiology and genomics. Caister Academic Press, Norfolk, UK, pp 179–199

    Google Scholar 

  • Rubio-Sanz L, Prieto RI, Imperial J, Palacios JM, Brito B (2013) Functional and expression analysis of the metal-inducible dmeRF system from Rhizobium leguminosarum bv. viciae. Appl Environ Microbiol 79:6414–6422

    Article  CAS  Google Scholar 

  • Samanovic MI, Ding C, Thiele DJ, Darwin KH (2012) Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 11:106–115

    Article  CAS  Google Scholar 

  • Sanders TH, Higuchi K, Brewer CR (1953) Studies on the nutrition of Brucella melitensis. J Bacteriol 66:294–299

    CAS  Google Scholar 

  • Sangari FJ, Cayón AM, Seoane A, García-Lobo JM (2010) Brucella abortus ure2 region contains an acid-activated urea transporter and a nickel transport system. BMC Microbiol 10:e107

    Article  Google Scholar 

  • Serventi F, Youard ZA, Murset V, Huwiler S, Bühler D, Richter M, Luchsinger R, Fischer HM, Brogioli R, Niederer M, Hennecke H (2012) Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum. J Biol Chem 287:38812–38823

    Article  CAS  Google Scholar 

  • Shafeeq S, Yesilkaya H, Kloosterman TG, Narayanan G, Wandel M, Andrew PW, Kuipers OP, Morrissey JA (2011) The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol 81:1255–1270

    Article  CAS  Google Scholar 

  • Siche S, Neubauer O, Hebbeln P, Eitinger T (2010) A bipartite S unit of an ECF-type cobalt transporter. Res Microbiol 161:824–829

    Article  CAS  Google Scholar 

  • Smith RL, Thompson LJ, Maguire ME (1995) Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J Bacteriol 177:1233–1238

    Article  CAS  Google Scholar 

  • Soncini FC, Véscovi EG, Solomon F, Groisman EA (1996) Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol 178:5092–5099

    Article  CAS  Google Scholar 

  • Swem DL, Swen LR, Setterdahl A, Bauer CE (2005) Involvement of SenC in assembly of cytochrome c oxidase in Rhodobacter capsulatus. J Bacteriol 187:8081–8087

    Article  CAS  Google Scholar 

  • Taga ME, Walker GC (2010) Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host. Mol Plant Microbe Interact 23:1643–1654

    Article  CAS  Google Scholar 

  • Thöny-Meyer L, Beck C, Preisig O, Hennecke H (1994) The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration in Rhodobacter capsulatus. Mol Microbiol 14:705–716

    Article  Google Scholar 

  • Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal sensors and metallochaperones. Acc Chem Res 38:775–783

    Article  CAS  Google Scholar 

  • Viebrock A, Zumft WG (1988) Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J Bacteriol 170:4658–4668

    Article  CAS  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nature Rev Microbiol 6:25–35

    Article  Google Scholar 

  • Ward SK, Abomoelak B, Hoye EA, Steinberg H, Talaat AM (2010) CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol 77:1096–1110

    Article  CAS  Google Scholar 

  • Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC (2002) The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 19:390–412

    Article  CAS  Google Scholar 

  • White C, Lee J, Kambe T, Fritsche K, Petris MJ (2009) A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284:33949–339956

    Article  CAS  Google Scholar 

  • Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S, Lamichhane G, Wang Y, Bossmann SH, Basaraba RJ, Niederweis M (2011) Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 108:1621–1626

    Article  CAS  Google Scholar 

  • Wu T, Wang S, Wang Z, Peng X, Lu Y, Wu Q (2015) A multicopper oxidase contributes to the copper tolerance of Brucella melitensis 16M. FEMS Microbiol Lett 362:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Martin Roop II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Roop II, R.M., Baumgartner, J.E., Pitzer, J.E., Martin, D.W. (2017). Magnesium, Copper and Cobalt. In: Roop II, R., Caswell, C. (eds) Metals and the Biology and Virulence of Brucella. Springer, Cham. https://doi.org/10.1007/978-3-319-53622-4_6

Download citation

Publish with us

Policies and ethics