Skip to main content

Optical Oxygen Measurements Within Cell Tissue Using Phosphorescent Microbeads and a Laser for Excitation

  • Chapter
  • First Online:
Biomimetics and Bionic Applications with Clinical Applications

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

In the field of tissue engineering, spherical phosphorescent microprobes are well suited to quantify the oxygen content in close proximity to the cells during their growth phase. When using standard seed trays like glass dishes, probe excitation and signal acquisition can be realized by applying a fluorescence microscope. However, when using a bulky bioreactor a custom-built optics system with a laser as the excitation source had to be employed. Here we describe the basic principles of spherical optical oxygen microprobes for use in standard cell cultures and the system modifications with a laser, which were required in order to perform similar measurements from a distance in bioreactor cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.agilent.com/en/product/cell-analysis/real-time-cell-metabolic-analysis/plate-reader-metabolic-assays/mitoxpress-intra-intracellular-oxygen-assay-740893

References

  1. Parmar, K., Mauch, P., Vergilio, J.-A., Sackstein, R., Julian, D.D.: Distribution of hematipoietic stem cells in the bone marrow according to regional hypoxia. PNAS 104(13), 5431–5436 (2007)

    Article  Google Scholar 

  2. Zhang, K., Zhu, L., Fan, M.: Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases: Frontiers in Molecular Neuroscience 4(5) 1–11 (2011)

    Google Scholar 

  3. Garcia-Ochoa, F., Gomez, E.: Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 27(2), 153–176 (2009)

    Article  Google Scholar 

  4. Li, S., Oreffo, R.O.C., Sengers, B.G., Tare, R.S.: The effect of oxygen tension on human articular chondrocyte matrix synthesis: integration of experimental and computational approaches: Biotechnol. Bioeng. 111(9), 1876–1885 (2014)

    Article  Google Scholar 

  5. Suresh, S., Srivastava, V.C., Mishra, I.M.: Techniques for oxygen transfer measurement in bioreactors: a review. J. Chem. Technol. Biotechnol. 84, 1091–1103 (2009)

    Article  Google Scholar 

  6. Clark, L.C., Wolf, R., Granger, D., Taylor, Z.: Continuous recording of blood oxygen tensions by polarography. J. Appl. Physiol. 6, 189–193 (1953)

    Article  Google Scholar 

  7. Stamati, K., Mudera, V., Cheema, U.: Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering: J. Tissue Eng. 2(1) (2011). https://doi.org/10.1177/2041731411432365

  8. Krawczyk-Bärsch, E., Grossmann, K., Arnold, T., Hofmann, S., Wobus, A.: Influence of uranium (VI) on the metabolic activity of stable multispecies biofilms studied by oxygen microsensors and fluorescence microscopy. Geochim. Cosmochim. Acta 72(21), 5251–5265 (2008)

    Article  Google Scholar 

  9. Volkmer, E., Drosse, I., Otto, S., Stangelmayer, A., Stengele, M., Kallukalam, B.C., Mutschler, W., Schieker, M.: Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng A. 14(8), 1331–1340 (2008)

    Article  Google Scholar 

  10. Klimant, I., Ruckruh, F., Liebsch, G., Stangelmayer, A., Wolfbeis, O.S.: Fast Response Oxygen Micro-Optodes Based on Novel Soluble Ormosil Glasses. Mikrochim. Acta 131, 35–46 (1999)

    Article  Google Scholar 

  11. Koo Lee, Y.-E., Kopelman, R.: Chapter twenty-one–Nanoparticle PEBBLE Sensors in Live Cells. Methods in Enzymology. 504 419–470 (2012)

    Google Scholar 

  12. Fercher, A., Borisov, S.M., Zhdanov, A.V., Klimant, I., Papkovsky, D.B.: Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 5(7), 5499–5508 (2011)

    Article  Google Scholar 

  13. Lee Koo, Y.-E., Cao, Y., Kopelman, R., Man Koo, S., Brasuel, M., Philbert, M.-A.: Real-Time Measurements of Dissolved Oxygen Inside Live Cells by Organically Modified Silicate Fluorescent Nanosensors. Anal. Chem. 76, 2498–2505 (2004)

    Article  Google Scholar 

  14. Monson, E., Brasuel, M., Philbert, M.A., Kopelman, R.: PEBBLE nanosensors for in vitro bioanalysis. Tuan Vo-Dinh, Biomedical Photonics Handbook, ISBN0849311160, CRC Press, March 26 (2003)

    Google Scholar 

  15. Dmitriev, R.I., Papkovsky, D.B.: Optical probes and techniques for O2 measurement in live cells and tissue. Cell. Mol. Life Sci. 69, 2025–2039 (2012)

    Article  Google Scholar 

  16. Stepinac, T.K., Chamot, S.R., Rungger-Brändle, E., Ferrez, P., Munoz, J.-L., van den Bergh, H., Riva, C.E., Pournaras, C.J., Wagnières, G.A.: Light-induced retinal vascular damage by Pd-porphyrin luminescent oxygen probes. IOVS. 46(3), 956–966 (2005)

    Google Scholar 

  17. Acosta, M.A., Ymele-Leki, P., Kostov, Y.V., Leach, J.B.: Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds. Biomaterials 30, 3068–3074 (2009)

    Article  Google Scholar 

  18. Wang, X., Otto, S., Wolfbeis, O.S.: Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem. Soc. Rev. 43(10), 3666–3761 (2014)

    Article  Google Scholar 

  19. Amao, Y.: Probes and Polymers for Optical Sensing of Oxygen. Microchim. Acta 143, 1–12 (2003)

    Article  Google Scholar 

  20. Ast, C., Schmälzlin, E., Löhmannsröben, H.-G., van Dongen, J.T.: Optical Oxygen Micro- and Nanosensors for Plant Applications. Sensors. 12(6), 7015–7032 (2012)

    Article  Google Scholar 

  21. Enko, B., Borisov, S.M., Regensburger, J., Bäumler, W., Gescheidt, G., Klimant, I.: Singlet Oxygen-Induced Photodegradation of the Polymers and Dyes in Optical Sensing Materials and the Effect of Stabilizers on These Processes. J. Phys. Chem. A 117, 8873–8882 (2013)

    Article  Google Scholar 

  22. Benson, B.B., Krause, D.: The concentration and isotopic fractionation of gases dissolved in fresh-water in equilibrium with the atmosphere. 1. Oxygen. Limnol. Oceanogr. 26 662–671 (1980)

    Google Scholar 

  23. Bossi, M.L., Daraio, M.E., Aramendía, P.F.: Luminescence quenching of Ru(II) complexes in polydimethylsiloxane sensors for oxygen. J. Photochem. Photobiol. A: Chemistry 120, 15–21 (1999)

    Article  Google Scholar 

  24. Cai, Y., Smith, A., Shinar, J., Shinar, R.: Data analysis and aging in phosphorescent oxygen-based sensors. Sensors and Actuators B: Chemical. 146(1), 14–22 (2010)

    Article  Google Scholar 

  25. Woods, R.J., Scypinski, S., Cline Love, L.J.: Transient Digitizer for the Determination of Microsecond Luminescence Lifetimes. Anal. Chem. 56, 1395–1400 (1984)

    Article  Google Scholar 

  26. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York (1999)

    Book  Google Scholar 

  27. Schmälzlin, E., van Dongen, J.T., Klimant, I., Marmodée, B., Steup, M., Fisahn, J., Geigenberger, P., Löhmannsröben, H.-G.: An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys. J. 89(2), 1339–1345 (2005)

    Article  Google Scholar 

  28. Schmälzlin, E., Friedmann, L., Horn, E., Zantl, R.: Spatially-resolved oxygen measurements in biological samples. Laser+Photonics, 71–73 (2015)

    Google Scholar 

  29. Ikai, M., Ishikawa, F., Aratani, N., Osuka, A., Kawabata, S., Kajioka, T., Takeuchi, H., Fujikawa, H., Taga, Y.: Enhancement of External Quantum Efficiency of Red Phosphorescent Organic Light-Emitting Devices with Facially Encumbered and Bulky PtII Porphyrin Complexes. Adv. Funct. Mater. 16, 515–519 (2006)

    Article  Google Scholar 

  30. Shahroosvand, H., Abbasi, P., Mohajerani, E., Janghouri, M.: Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups. Dalton Trans. 43, 9202–9215 (2014)

    Article  Google Scholar 

  31. Lehner, P., Staudinger, P., Borisov, S.M., Regensburger, Klimant, I.: Intrinsic Artefacts in Optical Oxygen Sensors—How Reliable are our Measurements? Chem. Eur. J. 21, 3978 – 3986 (2015)

    Google Scholar 

  32. Prill, E., Bavli, D., Levy, G., Ezra, E., Schmälzlin, E., Jaeger, M.S., Schwarz, M., Duschl, C., Cohen, M., Nahmias, Y.: Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone. Arch. Toxicol. 90, 1181–1191 (2016)

    Article  Google Scholar 

  33. Bavli, D., Prill, S., Ezra, E., Levy, G., Cohen, M., Vinken, M., Vanfleteren, J., Jaeger, M., Nahmias, Y.: Real-time monitoring of metabolic function in liver-onchip microdevices tracks the dynamics of mitochondrial dysfunction. PNAS 113(16), E2231–E2240 (2016)

    Article  Google Scholar 

  34. Prill, S., Anderson, A., Papkovsky D.B., Schmälzlin, E.: Intracellular O2 Measurements. G.I.T. Laboratory Journal Europe. 12, 28–29 (2014)

    Google Scholar 

  35. Ethirajan, M., Chen, Y., Joshi, P., Pandey, R.K.: The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 40, 340–362 (2011)

    Article  Google Scholar 

  36. Israelowitz, M., Weyand, B., Rizvi, S., Vogt, P.M., von Schroeder, H.P.: Development of a Laminar Flow Bioreactor by Computational Fluid Dynamics. J. Healthcare Engineering 3(3), 455–476 (2012)

    Article  Google Scholar 

  37. Grzelak, A., Rychlik, B., Bartosz, G.: Light-dependent generation of reactive oxygen species in cell culture media. Free Radic. Biol. Med. 30(12), 1418–1425 (2001)

    Article  Google Scholar 

  38. Cardoso, D.R., Libardia, S.H., Skibsted L.H.: Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct. 3 487–502 (2012)

    Google Scholar 

  39. Wilkinson, F., Helman, W.P., Ross, A.B.: Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation. Journal of Physical and Chemical Reference Data. 24(2) 663–1021 (1995)

    Google Scholar 

  40. Weyand, B., Nöhre, M., Schmälzlin, E., Stolz, M., Israelowitz, M., Gille, C. von Schroeder, H.P., Reimers, Vogt, P.M.: Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions. BioResearch Open Access 4(1) 266–277 (2015)

    Google Scholar 

Download references

Acknowledgements

The modification of the OPAL oxygen measurement was funded by the investment bank of the German federal state of Brandenburg, grant no. 80149436 (FeLas3D). This work was supported by a grant of Hannover Impuls Excellence Initiative, a State doctorate grant for female scientists for B.W. through Hannover Medical School and a medical student doctoral grant through the “Struc Med” program of Hannover Biomedical Research School for M.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Schmälzlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmälzlin, E., Nöhre, M., Weyand, B. (2021). Optical Oxygen Measurements Within Cell Tissue Using Phosphorescent Microbeads and a Laser for Excitation. In: Israelowitz, M., Weyand, B., von Schroeder, H., Vogt, P., Reuter, M., Reimers, K. (eds) Biomimetics and Bionic Applications with Clinical Applications. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-53214-1_8

Download citation

Publish with us

Policies and ethics