Skip to main content

Biomimetics Strategies to Overcoming Noise

  • Chapter
  • First Online:
Biomimetics and Bionic Applications with Clinical Applications

Abstract

Noise is considered an artefact, in the practical use it is overcome by cool down the system in general at 77 K. We consider three biological examples which overcome noise by filtering the ratio between the signals and noise by using a distribution system. Noise is considered here in statistical terms poison, where the incident photon or otherwise in a detector and the detector has not influence and cannot increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frieden, B.R.: Probability, Statistical Optics and Data Testing. Springer, New York, NY (1991)

    Book  MATH  Google Scholar 

  2. Dereniak, D.L., Boreman, G.D.: Infrared Detectors and Systems. John Wiley & Sons, New York (1996)

    Google Scholar 

  3. Holtst, G.S.: Common Sense Approach to Thermal Imaging. SPIE Optical Engineering Press, Winter Park, Florida US (2000)

    Book  Google Scholar 

  4. Lee, S.K., Romalis, M.V.: Calculation of magnetic field noise from high permeability magnetic shields and conducting objects with a simple geometry. J. Appl. Phys. 103, 084904 (2008)

    Article  Google Scholar 

  5. Wolken, J.J.: Light Detectors, Photoreceptors and Imaging System in Nature. Oxford University Press, New York Oxford (1995)

    Google Scholar 

  6. Niven, J.E., Scharleman, J.P.W.: Do insects metabolic rates at rest and during flight scale with body mass? Biol. Lett. 1, 346–349 (2005)

    Article  Google Scholar 

  7. Waterman, T.H.: Animal Navigation. Scientific America Library, W. H. Freeman & Co., New York

    Google Scholar 

  8. Banks, R.C., McDiarmid, R.W., Gardner, A.L.: Checklist of Vertebrates of the United States, the U.S. Territories, and Canada, no. 166. Federal Government Series: Resource Publication (1987)

    Google Scholar 

  9. Bullok, T.H., Cowles, R.B.: Physiology of an infrared receptor: the facial pit of pit vipers. Science 115, 541–543

    Google Scholar 

  10. Chailapakula, O., Wonsawat, W., Siangprohb, W., Grudpan, K., Zhaod, Y., Zhud, Z.: Analysis of sudan I, sudan II, sudan III, and sudan IV in food by HPLC with electrochemical detection: comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode. Food Chem. 109, 876–882 (2008)

    Article  Google Scholar 

  11. Lillie, R.D.: Conn’s Biological Stains. Williams & Wilkins, Baltimore, MD., U.S.A

    Google Scholar 

  12. Baker, J.R.: Principles of Biological Microtechnique. Methuen, London (1970)

    Google Scholar 

  13. Lansink, A.G.W.: Thin layer chrornatography and histochemistry of Sudan Black B. Histochemie 16, 68–84 (1968)

    Article  Google Scholar 

  14. Himes, M., Moriber, L.: A triple stain for deoxyribonucleic acid, polysaccharides and proteins. Stain Technol. 31, 67–70 (1956)

    Article  Google Scholar 

  15. Patterson, C.M., Kruger, B.J., Dalez, T.J.: Lipid and protein histochemitry of enamel of fluoride-effects of fluoride. Calcif. Tissue Int. 24, 119–125 (1977)

    Article  Google Scholar 

  16. Vogel, M.: Observations on the structure of Cystierci of Taenia solium and Taenia saginata (Cestoda: Taeniidae). J. Parasitol. 49, 86–90 (1963)

    Google Scholar 

  17. Ornstein, L., Hudson, A.: Spectral matching of classical cytochemistry to automated cytology. J. Histochem. Cytochem. 22, 453–469 (1974)

    Article  Google Scholar 

  18. Lûsis, O.: The histology and histochemistry of development and resorption in the terminal oocytes of desert locust, Schistocerca gregaria. Quar J Micro Sci. 104, 57–68 (1963)

    Google Scholar 

  19. Briand, L., Nespoulos, C., Huet, J.C., Takahashi, T., Pernollet, J.C.: Lingand binding and physico-chemical properties ASP2, a recombination odorant-biding protein from honeybee. E. J. Biochem. 268, 752–760 (2001)

    Article  Google Scholar 

  20. Uebe, R., Voigt, B., Schweder, T., Albrecht, D., Katzmann, E., Lang, L., Böttger, L., Matzanke, B., Schüler, D.: Deletion of a fur-Like gene affects iron Homeostasis and Magnetosome formation in Magnetospirillum Gryphiswaldense. J. Bacteriol. 192, 4192–4204 (2010)

    Article  Google Scholar 

  21. Schüller, D.: Formation of Magnetosomes in Magnectotactic bacteria. J. Mol. Microbiol. Biotechnol. 1, 79–86 (1999)

    Google Scholar 

  22. Uebe, R., Henn, V., Schüler, D.: The MagA protein of Magnetospirilla is not involved in bacterial magnetite biomineralization. Bacteriol. 194, 1018–1023 (2012)

    Article  Google Scholar 

  23. Muñoz, V., Decroix, D., Chevy, A., Besson, J.M.: Optical properties of zinc phosphide. J. Appl. Phys. 60, 3282–3288 (1986)

    Article  Google Scholar 

  24. Decroix, D., Munoz, V., Chevy, A.: Growth and electrical properties of Zn3P2 single crystals and polycrystalline ingonts. J. Mater. Sci. 22, 1265–1270 (1987)

    Article  Google Scholar 

  25. Israelowitz, M., Weyand, B., Leiterer, C., Munoz, V., Martinez-Tomas, C., Herraiz-Llacer, M., Slowik, I., Beleites, C., Fritzsche, W., Krafft, C., Henkel, T., M Reuter, Rizvi, S., Gille, C., Reimers, K., Vogt, P., von Schroeder, H.P.: Biomimetic-inspired infrared sensors from Zn3P2 microwires: study of their photoconductivity and infrared spectrum properties. New J. Sci. (2014)

    Google Scholar 

  26. Weyand, B., Israelowitz, M., Reuter, M., Bohlmann, S., Rizvi, S.W., Gille, C., Vogt, P., von Schroeder, H.P.: Morphological study of the near-infrared pit sensor of the Python. In: Biomimetics, Bionic Applications, with Clinical Applications. Springer International Publishing Switzerland (2015)

    Google Scholar 

  27. Klein, M.C.G., Gorb, S.N.: Epidermis architecture and material properties of the skin of four snake species. R. Soc. Publ. (2012)

    Google Scholar 

  28. Krochmal, A.R., Bakken, G.S., LaDuc, T.J.: Heat in evolution’s kitchen: evolutionary perspectives on the functions and origin of the facial pit of pitvipers (Viperidae: Crotalinae). J. Exp. Biol. 207, 4231–4238 (2004)

    Article  Google Scholar 

  29. Bullock, T.H.: Radiant heat reception in snakes. Commun. Behav. Biol. A 1, 10–29 (1968)

    Google Scholar 

  30. Chiasson, R.B., Bentley, D.L., Lowe, C.H.: Scale morphology in Agkistrodon and closely related Crotaline Genera. Herpetologica. 45, 430–438

    Google Scholar 

  31. Von Düring, M., Miller, M.R.: Sensory nerve endings of the skin and deeper structures. Academic Press, London (1979)

    Google Scholar 

  32. Bullock, T.H., Fox, W.: The anatomy of the infra-red sense organ in the facial pit of pit vipers. Q. J. Microsc. Sci. 98, 219–223 (1957)

    Google Scholar 

  33. Newman, E.A., Gruberd, E.R., Hartline, P.H.: The infrared trigemino-tectal pathway in the rattlesnake and in the python. J. Comp. Neurol. 191

    Google Scholar 

  34. Israelowitz, M., Rizvi, S.W., von Schroeder, H.P.: Fluorescence of the “fire-chaser” beetle Melanophila acuminata. J. Lumin. 126, 149–154 (2007)

    Article  Google Scholar 

  35. Pfeiffer, H.: Determination of anisotropy field distribution in particle assemblies taking into account thermal fluctuations. Phys. Sataus Solidi A. 118, 295–306 (1990)

    Article  Google Scholar 

  36. Gracheva, E.A., Nicholas, I.T., Ingolia, N., Kelly, Y.M., Cordero-Morales, J.M., Hollopeter, G., Chesler, A.T., Sánchez, E.E., Perez, J.C., J S Weissman, Davis, J.D.: Molecular basis of infrared detection by snakes. Nature 464, 1006–1011 (2010)

    Google Scholar 

  37. Israelowitz, M., Kwon, K.A., Rizvi, S.W., Gille, C., von Schroeder, H.P.: Mechanism of infrared detection and transduction by Beetle Melanophila Acuminata in memory of Jerry Wolken. J. Bionic Eng. 8, 129–139 (2011)

    Article  Google Scholar 

  38. Strauss, S., Israelowitz, M., Weyand, B., Müller, R., Henkel, T., Shüler, D., Uebe, R., Rizvi, S., Gille, C., von Schroeder, H.P., Reimers, K.: Ferro oxyize magnetic-torsional angle from Magnetospirillum gryphiswaldense. In: Biomimetics, Bionic Applications, with Clinical applications. Springer International Publishing Switzerland (2015)

    Google Scholar 

  39. Evans, G.: Infrared receptors in Melanophila acuminata De Geer. Nature 202, 211 (1964)

    Article  Google Scholar 

  40. Reuter, M., Bohlmann, S.: Automatic detection of buried utilities in georeferenced multi-sensor data with neural networks. Presented at the TOK, Izmir, Turkey August (2011)

    Google Scholar 

  41. Reuter, M.: Computing with Activities V. experimental proof of the stability of closed self organizing Maps (gSOMs) and the potential formulation of neural nets. Presented at the WAC 2008, Waikoloa, Hawaii, USA (2008)

    Google Scholar 

  42. Reuter, M., Lenkl, K., Schroeder, O., Gramowski, A., Jügelt, K., Priwitzer, B.: Information extraction from biphasic concentration-response curves for data obtained from neuronal activity of networks cultivated on multielectrode-array-neurochips. Presented at the BMC Neuroscience January (2010)

    Google Scholar 

  43. Reuter, M.: Of the Stability of Closed Self Organising Maps (gSOMs) for Predictive Control. Presented at the, Lyon, France (2008)

    Google Scholar 

  44. Reuter, M.: Supervising cathodic protected gas nets with CI-based methods. Presented at the ISC’2013, 11th Annual Industrial Simulation Conference, Ghent, Belgium, 22 May 2013

    Google Scholar 

  45. Reuter, M., Bohlmann, S.: Supervising MultiCut Aggregates by Special Neural Nets. Presented at the WAC 2012, Puerto Vallarta, Mexico (2012)

    Google Scholar 

  46. Riedmiller, M., Braum, H.: A direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm, Neural Networks. Presented at the IEEE International Conference (1993)

    Google Scholar 

  47. Munoz, V., Decroix, D., Chevy, A., Besson, J.M.: Optical properties of zinc phosphide. Appl. Phys. 69, 3282–3288 (1986)

    Article  Google Scholar 

  48. Israelowitz, M., Rizvi, S.W., Holm, C., Gille, C., von Schroeder, H.P.: Method for producing a microchip that is able to detect infrared light with a semiconductor at room temperature

    Google Scholar 

  49. Israelowitz, M., Rizvi, S.W., Holm, C., Gille, C., von Schroeder, H.P.: Method to detect poor infrared rays, microchip that is able to detect poor infrared rays and apparatus working with these microchips

    Google Scholar 

  50. Israelowitz, M., Rizvi, S.W., Gille, C., Holm, C., von Schroeder, H.P.: Method for detection of poor sources of electrical and magnetic fields

    Google Scholar 

  51. Israelowitz, M., Rizvi, S.W., Gille, C., Holm, C., von Schroeder, H.P.: Microchip for the detection of poor sources of electrical and magnetic fields

    Google Scholar 

  52. Titterington, D.M.: Bayesian methods for neural networks and related models. Stat. Sci. 19, 128–129 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kaski, S.: Data exploration using self-organizing maps. Acta Polythecnica Scand. Math. Comput. Manag. Publ. Finn. Acad. Technol. 57–60 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed W. H. Rizvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizvi, S.W.H. et al. (2021). Biomimetics Strategies to Overcoming Noise. In: Israelowitz, M., Weyand, B., von Schroeder, H., Vogt, P., Reuter, M., Reimers, K. (eds) Biomimetics and Bionic Applications with Clinical Applications. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-53214-1_10

Download citation

Publish with us

Policies and ethics