Skip to main content

Biological Nanomaterials and Their Development

  • Chapter
  • First Online:
Nanomaterials: The Building Blocks of Modern Technology

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 262 Accesses

Abstract

Biological nanomaterials, also known as biomaterials, are materials derived from or inspired by biological systems, such as proteins, nucleic acids, and viruses. This chapter provides an overview of the synthesis, characterization, and applications of biological nanomaterials. We begin by discussing the properties and synthesis methods of these materials, including genetic engineering, chemical modification, and self-assembly. Next, we describe their characterization techniques, such as electron microscopy, X-ray crystallography, and circular dichroism. The chapter also explores the various applications of biological nanomaterials, including in drug delivery, tissue engineering, biosensors, and biocatalysis. Moreover, we highlight the challenges associated with their large-scale production and commercialization, such as immunogenicity, stability, and regulatory issues. Finally, the chapter concludes with a summary of the current state of research and suggests possible directions for future work in this exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73(1):137–150

    Article  CAS  Google Scholar 

  2. Basavegowda N, Mishra K, Lee YR (2017) Trimetallic FeAgPt alloy as a nanocatalyst for the reduction of 4-nitroaniline and decolorization of rhodamine B: a comparative study. J Alloy Compd 701:456–464

    Article  CAS  Google Scholar 

  3. Sun L, Yin Y, Lv P, Su W, Zhang L (2018) Green controllable synthesis of Au–Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity. RSC Adv 8(8):3964–3973

    Article  CAS  Google Scholar 

  4. Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  Google Scholar 

  5. Zhou GJ, Li SH, Zhang YC, Fu YZ (2014) Biosynthesis of CdS nanoparticles in banana peel extract. J Nanosci Nanotechnol 14(6):4437–4442

    Article  CAS  Google Scholar 

  6. Ganaie SU, Abbasi T, Abbasi SA (2015) Rapid and green synthesis of bimetallic Au–Ag nanoparticles using an otherwise worthless weed Antigonon leptopus. J Exp Nanosci 11(6):395–417

    Article  Google Scholar 

  7. Varukattu NB, Vivek R, Rejeeth C, Thangam R, Ponraj T, Sharma A, Kannan S (2020) Nanostructured pH-responsive biocompatible chitosan coated copper oxide nanoparticles: a polymeric smart intracellular delivery system for doxorubicin in breast cancer cells. Arab J Chem 13(1):2276–2286

    Article  CAS  Google Scholar 

  8. Ma K, Cheng Y, Wei X, Chen D, Zhao X, Jia P (2020) Gold embedded chitosan nanoparticles with cell membrane mimetic polymer coating for pH-sensitive controlled drug release and cellular fluorescence imaging. J Biomater Appl 35(7):857–868

    Article  Google Scholar 

  9. Vunain E, Mishra AK, Mamba BB (2017) Fundamentals of chitosan for biomedical applications. Chitosan Based Biomater 1:3–30

    Article  Google Scholar 

  10. Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS (2019) Chitosan as an environment friendly biomaterial—a review on recent modifications and applications. Int J Biol Macromole

    Google Scholar 

  11. Yilmaz Atay H (2020) Antibacterial activity of chitosan-based systems. Functional Chitosan: 457–489

    Google Scholar 

  12. Liu N, Chen X-G, Park H-J, Liu C-G, Liu C-S, Meng X-H, Yu L-J (2006) Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohyd Polym 64(1):60–65

    Article  CAS  Google Scholar 

  13. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci IJBS 4(2):89–96

    CAS  Google Scholar 

  14. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids 25(2):170–179. https://doi.org/10.1016/j.foodhyd.2010.03.003

    Article  CAS  Google Scholar 

  15. Adhikari HS, Yadav PN (2018) Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater 2018:e2952085. https://doi.org/10.1155/2018/2952085

    Article  CAS  Google Scholar 

  16. Park JK, Chung MJ, Choi HN, Park YI (2011) Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int J Mol Sci 12(1):266–277. https://doi.org/10.3390/ijms12010266

    Article  CAS  Google Scholar 

  17. Frank LA, Onzi GR, Morawski AS, Pohlmann AR, Guterres SS, Contri RV (2020) Chitosan as a coating material for nanoparticles intended for biomedical applications. React Funct Polym 147:104459. https://doi.org/10.1016/j.reactfunctpolym.2019.104459

    Article  CAS  Google Scholar 

  18. Safdar R, Omar AA, Arunagiri A, Regupathi I, Thanabalan M (2019) Potential of chitosan and its derivatives for controlled drug release applications—a review. J Drug Delivery Sci Technol 49:642–659

    Article  CAS  Google Scholar 

  19. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24(8):1415–1426

    Article  CAS  Google Scholar 

  20. Fuster MG, Montalbán MG, Carissimi G, Lima B, Feresin GE, Cano M, Giner-Casares JJ, López-Cascales JJ, Enriz RD, Víllora G2020) Antibacterial effect of chitosan-gold nanoparticles and computational modeling of the interaction between chitosan and a lipid bilayer model. Nanomaterials 10(12):2340

    Google Scholar 

  21. Poza P, Pérez-Rigueiro J, Elices M, Llorca J (2002) Fractographic analysis of silkworm and spider silk. Eng Fract Mechan 69(9):1035–1048.https://doi.org/10.1016/s0013-7944(01)00120-5

  22. Koh LD, Cheng Y, Teng CP, Khin YW, Loh XJ, Tee SY, Low M, Ye E, Yu HD, Zhang YW, Han MY (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110

    Google Scholar 

  23. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–1631

    Article  CAS  Google Scholar 

  24. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  Google Scholar 

  25. Lammel AS, Hu X, Park S-H, Kaplan DL, Scheibel TR (2010) Controlling silk fibroin particle features for drug delivery. Biomaterials 31(16):4583–4591

    Article  CAS  Google Scholar 

  26. Lan Y, Li W, Jiao Y, Guo R, Zhang Y, Xue W, Zhang Y (2014) Therapeutic efficacy of antibiotic-loaded gelatin microsphere/silk fibroin scaffolds in infected full-thickness burns. Acta Biomater 10(7):3167–3176

    Article  CAS  Google Scholar 

  27. Li H, Zhu J, Chen S, Jia L, Ma Y (2017) Fabrication of aqueous-based dual drug loaded silk fibroin electrospun nanofibers embedded with curcumin-loaded RSF nanospheres for drugs controlled release. RSC Adv 7(89):56550–56558

    Article  CAS  Google Scholar 

  28. Fernández-García L, Marí-Buyé N, Barios JA, Madurga R, Elices M, Pérez-Rigueiro J, Ramos M, Guinea GV, González-Nieto D (2016) Safety and tolerability of silk fibroin hydrogels implanted into the mouse brain. Acta Biomater 45:262–275

    Google Scholar 

  29. Vidal SEL, Tamamoto KA, Nguyen H, Abbott RD, Cairns DM, Kaplan DL (2019) 3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components. Biomaterials 198:194–203

    Article  CAS  Google Scholar 

  30. Wang S, Zhu M, Zhao L, Kuang D, Kundu SC, Lu S (2019) Insulin-loaded silk fibroin microneedles as sustained release system. ACS Biomater Sci Eng 5(4):1887–1894

    Article  CAS  Google Scholar 

  31. Boopathy AV, Mandal A, Kulp DW, Menis S, Bennett NR, Watkins HC, Wang W, Martin JT, Thai NT, He Y, Schief WR (2019) Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc Natl Acad Sci 116(33):16473–16478

    Google Scholar 

  32. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470

    Article  CAS  Google Scholar 

  33. Bandyopadhyay A, Chowdhury SK, Dey S, Moses JC, Mandal BB (2019) Silk: A promising biomaterial opening new vistas towards affordable healthcare solutions. J Indian Inst Sci 99(3):445–487

    Article  Google Scholar 

  34. Gil ES, Panilaitis B, Bellas E, Kaplan DL (2013) Functionalized silk biomaterials for wound healing. Adv Healthcare Mater 2(1):206–217

    Article  CAS  Google Scholar 

  35. Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL (2007) Silk fibroin microtubes for blood vessel engineering. Biomaterials 28(35):5271–5279

    Article  CAS  Google Scholar 

  36. Jia M, Chen Z, Guo Y, Chen X, Zhao X (2017) Efficacy of silk fibroin–nano silver against Staphylococcus aureus biofilms in a rabbit model of sinusitis. Int J Nanomed 12:2933–2939

    Article  CAS  Google Scholar 

  37. Ribeiro M, Ferraz MP, Monteiro FJ, Fernandes MH, Beppu MM, Mantione D, Sardon H (2017) Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomed Nanotechnol Biol Med 13(1):231–239

    Google Scholar 

  38. Mostofizadeh A, Li Y, Song B, Huang Y (2011) Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J Nanomater 2011:1–21

    Article  Google Scholar 

  39. Zhang H, Grüner G, Zhao Y (2013) Recent advancements of graphene in biomedicine. J Mater Chem B 1(20):2542

    Article  CAS  Google Scholar 

  40. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14(23):1609–1613

    Article  CAS  Google Scholar 

  41. Lin Y, Lu F, Tu Y, Ren Z (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 4(2):191–195

    Article  CAS  Google Scholar 

  42. Zhu L, Deng C, Chen P, You X, Su H, Yuan Y, Zhu M (2014) Glucose oxidase biosensors based on carbon nanotube non-woven fabrics. Carbon 67:795–796

    Article  CAS  Google Scholar 

  43. Ulissi ZW, Sen F, Gong X, Sen S, Iverson N, Boghossian AA, Godoy LC, Wogan GN, Mukhopadhyay D, Strano MS (2014) Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett 14(8):4887–4894

    Google Scholar 

  44. Mphuthi NG, Adekunle AS, Ebenso EE (2016) Electrocatalytic oxidation of epinephrine and norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor. Sci Rep 6(1):26938

    Article  CAS  Google Scholar 

  45. Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors 17(10):2161

    Article  Google Scholar 

  46. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307; Tang L, Wang Y, Li J (2015) The graphene/nucleic acid nanobiointerface. Chem Soc Rev 44(19):6954–6980

    Google Scholar 

  47. Ping J, Vishnubhotla R, Vrudhula A, Johnson ATC (2016) Scalable production of high-sensitivity, label-free DNA biosensors based on back-gated graphene field effect transistors. ACS Nano 10(9):8700–8704

    Article  CAS  Google Scholar 

  48. Xie R, Wang Z, Zhou W, Liu Y, Fan L, Li Y, Li X (2016) Graphene quantum dots as smart probes for biosensing. Anal Methods 8(20):4001–4016

    Article  CAS  Google Scholar 

  49. Kumawat MK, Thakur M, Gurung RB, Srivastava R (2017) Graphene quantum dots for cell proliferation, nucleus imaging, and photoluminescent sensing applications. Sci Rep 7(1)

    Google Scholar 

  50. Das M, Singh RP, Datir SR, Jain S (2013) Intranuclear drug delivery and effective in vivo cancer therapy via estradiol–PEG-appended multiwalled carbon nanotubes. Mol Pharm 10(9):3404–3416

    Article  CAS  Google Scholar 

  51. Huang H, Yuan Q, Shah JS, Misra RDK (2011) A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv Drug Deliv Rev 63(14–15):1332–1339

    Article  CAS  Google Scholar 

  52. Singh S, Mehra NK, Jain NK (2016) Development and characterization of the paclitaxel loaded riboflavin and thiamine conjugated carbon nanotubes for cancer treatment. Pharm Res 33(7):1769–1781

    Article  CAS  Google Scholar 

  53. Lee P-C, Lin C-Y, Peng C-L, Shieh M-J (2016) Development of a controlled-release drug delivery system by encapsulating oxaliplatin into SPIO/MWNT nanoparticles for effective colon cancer therapy and magnetic resonance imaging. Biomater Sci 4(12):1742–1753

    Article  CAS  Google Scholar 

  54. Wang X, Wang C, Cheng L, Lee S-T, Liu Z (2012) Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc 134(17):7414–7422

    Article  CAS  Google Scholar 

  55. Kundu A, Nandi S, Das P, Nandi AK (2015) Fluorescent graphene oxide via polymer grafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs. ACS Appl Mater Interfaces 7(6):3512–3523

    Article  CAS  Google Scholar 

  56. Srivastava A, Yadav T, Sharma S, Nayak A, Akanksha Kumari A, Mishra N (2016) Polymers in drug delivery. J Biosci Med 04(01):69–84

    CAS  Google Scholar 

  57. Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D (2014) Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B 2(21):3190–3195

    Article  CAS  Google Scholar 

  58. Ding H, Zhang F, Zhao C, Lv Y, Ma G, Wei W, Tian Z (2017) Beyond a carrier: graphene quantum dots as a probe for programmatically monitoring anti-cancer drug delivery, release, and response. ACS Appl Mater Interfaces 9(33):27396–27401

    Article  CAS  Google Scholar 

  59. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534

    Article  CAS  Google Scholar 

  60. Lin Y-S, Hurley KR, Haynes CL (2012) Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett 3(3):364–374

    Article  CAS  Google Scholar 

  61. He Q, Zhang Z, Gao F, Li Y, Shi J (2010) In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 7(2):271–280

    Article  Google Scholar 

  62. Fu C, Liu T, Li L, Liu H, Chen D, Tang F (2013) The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 34(10):2565–2575

    Article  CAS  Google Scholar 

  63. Ryu HJ, Seong NW, So BJ, Seo HS, Kim JH, Hong JS, Park MK, Kim MS, Kim YR, Cho KB, Seo MY (2014) Evaluation of silica nanoparticle toxicity after topical exposure for 90 days. Int J Nanomed: 127

    Google Scholar 

  64. Izquierdo-Barba I, Martinez Á, Doadrio AL, Pérez-Pariente J, Vallet-Regí M (2005) Release evaluation of drugs from ordered three-dimensional silica structures. Eur J Pharm Sci 26(5):365–373

    Article  CAS  Google Scholar 

  65. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed Nanotechnol Biol Med 11(2):313–327

    Google Scholar 

  66. Elahi N, Kamali M, Baghersad MH (2018) Recent biomedical applications of gold nanoparticles: a review. Talanta 184:537–556

    Article  CAS  Google Scholar 

  67. Hasan S (2015, Feb 11) A review on nanoparticles: their synthesis and types. Retrieved December 7, 2022, from scholar.googleusercontent.com

    Google Scholar 

  68. Janson O, Gururaj S, Pujari-Palmer S, Karlsson Ott M, Strømme M, Engqvist H, Welch K (2019) Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility. Mater Sci Eng C 96:272–279

    Article  CAS  Google Scholar 

  69. Sirelkhatim A, Mahmud S, Seeni A, Kaus NH, Ann LC, Bakhori SK, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242

    Google Scholar 

  70. Bera RK, Mandal SM, Raj CR (2014) Antimicrobial activity of fluorescent Ag nanoparticles. Lett Appl Microbiol 58(6):520–526

    Article  CAS  Google Scholar 

  71. Viswanathan A, Rangasamy J, Biswas R (2019) Functionalized antibacterial nanoparticles for controlling biofilm and intracellular infections. Surface Mod Nanoparticles Targeted Drug Del: 183–206

    Google Scholar 

  72. Nielsen PE, Egholm M (1999) An introduction to peptide nucleic acid. Curr Issues Mole Biol

    Google Scholar 

  73. Shakeel S, Karim S, Ali A (2006) Peptide nucleic acid (PNA)—a review. J Chem Technol Biotechnol 81(6):892–899

    Article  CAS  Google Scholar 

  74. Suzuki KGN, Fujiwara TK, Edidin M, Kusumi A (2007) Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3–Ca2+ signaling: single-molecule tracking study 2. J Cell Biol 177(4):731–742

    Article  CAS  Google Scholar 

  75. Dong H, Lei J, Ju H, Zhi F, Wang H, Guo W, Zhu Z, Yan F2012) Target-cell-specific delivery, imaging, and detection of intracellular MicroRNA with a multifunctional SnO2 nanoprobe. Angew Chem Int Ed 51(19):4607–4612

    Google Scholar 

  76. Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM (2009) Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron 24(8):2504–2508

    Article  CAS  Google Scholar 

  77. Kanchi S, Ahmed S (2018) Green metal nanoparticles: synthesis, characterization and their applications. Wiley-Scrivener

    Google Scholar 

  78. Suresh S (2013) Semiconductor nanomaterials, methods and applications: a review. Nanosci Nanotechnol 3(3):62–74

    Google Scholar 

  79. Xia Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Google Scholar 

  80. Malik P et al (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart

    Google Scholar 

  81. Makarov VV et al (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (anglozyqna vepci). Obwectvocogpaniqenno otvetctvennoct Papk-media 6(1(20))

    Google Scholar 

  82. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356

    Google Scholar 

  83. Singh M et al (2012) Natural minerals and cancer. J Appl Pharm Sci 2(04):158–165

    Article  Google Scholar 

  84. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Google Scholar 

  85. El-Newehy MH et al (2018) Green electrospining of hydroxypropyl cellulose nanofibres for drug delivery applications. J Nanosci Nanotechnol 18(2):805–814

    Google Scholar 

  86. Palit S (2017) Application of nanotechnology, nanofiltration and drinking and wastewater treatment—a vision for the future. In: Grumezescu AM (ed) Water purification, 1st edn. Academic Press, USA, pp 587–620

    Chapter  Google Scholar 

  87. Palit S, Hussain CM (2018c) Environmental management and sustainable development, 1st edn. In: Hussain CM (ed) Springer handbook of environmental materials management. Springer Nature America, Inc., pp 1–17

    Google Scholar 

  88. Palit S, Hussain CM (2018d) Sustainable biomedical waste management, 1st edn. In: Hussain CM (ed) Springer handbook of environmental materials management. Springer Nature America, Inc., pp 1–23

    Google Scholar 

  89. Palit S, Hussain CM (2018e) Nanomembranes for environment, 1st edn. In: Hussain CM (ed) Springer handbook of environmental materials management. Springer Nature America, Inc., pp 1–24

    Google Scholar 

  90. Palit S, Hussain CM (2018f) Remediation of industrial and automobile exhausts for environmental management, 1st edn. In: Hussain CM (ed) Springer handbook of environmental materials management. Springer Nature America, Inc., pp 1–17

    Google Scholar 

  91. Palit S, Hussain CM (2018) Nanomaterials for environmental science: a recent and future perspective. In: Hussain CM, Mishra AK (eds) Nanotechnology in environmental science, 1st edn. Wiley, Weinheim, pp 3–18

    Google Scholar 

  92. Palit S (2017) Nanomaterials for industrial wastewater treatment and water purification. In: Martinez LMT, Kharissova OV, Kharisov BI (eds) Springer handbook of ecomaterials, 1st edn. Springer International Publishing, Springer Nature Switzerland AG, pp 1–41

    Google Scholar 

  93. Palit S (2018) Recent advances in corrosion science: a critical overview and a deep comprehension. In: Kharisov B (ed) Direct synthesis of metal complexes, 1st edn. Elsevier, USA, pp 379–410

    Google Scholar 

  94. Palit S (2018) Recent advances in the application of engineered nanomaterials in the environment industry-a critical overview and a vision for the future (Chap. 47). In: Hussain CM (ed) Handbook of nanomaterials for industrial applications, 1st edn. Elsevier, Amsterdam, pp 883–893

    Chapter  Google Scholar 

  95. Palit S, Hussain CM (2018) Recent advances in green nanotechnology and the vision for the future (Chap. 1). In: Kanchi S, Ahmed S (eds) Green metal nanoparticles. Wiley Scrivener Publishing LLC, USA, pp 3–22

    Google Scholar 

  96. Palit S, Hussain CM (2018b) Engineered nanomaterial for industrial use (Chap. 1), 1st edn. In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 3–12

    Google Scholar 

  97. Glaser JA (2012) Green chemistry with nanocatalysts. Clean Techn Environ Policy 14:513–520. https://doi.org/10.1007/s10098-012-0507-0

  98. Nath D, Banerjee P, Das B (2014) Green nanomaterial-how green they are as biotherapeutic tool. J Nanomed Biotherapeutic Discov 4:2

    Google Scholar 

  99. Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci: 2502. ISSN: 2277

    Google Scholar 

  100. Biao L, Tan S, Meng Q, Gao J, Zhang X, Liu Z, Fu Y (2018) Green synthesis, characterization and application of proanthocyanidins—functionalized gold nanoparticles. Nanomaterials 8(53):1–12

    Google Scholar 

  101. Wardencki W, Curylo J, Namiesnik J (2005) Green chemistry-current and future issues. Pol J Environ Stud 14(4):389–395

    CAS  Google Scholar 

  102. Palit S, Hussain CM (2018) Nanocomposites in packaging: a groundbreaking review and a vision for the future. In: Ahmed S (ed) Bio-based materials for food packaging. Springer Nature Singapore Pte. Ltd., Singapore, pp 287–303

    Chapter  Google Scholar 

  103. Kalaivani R, Maruthupandy M, Muneeswaran T, Hameedha Beevi A, Anand M, Ramakritinan CM, Kumaraguru AK (2018) Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Labor Med 2(1):30–35

    Article  Google Scholar 

  104. Lu Y, Ozcan S (2015) Green nanomaterials: on track for a sustainable future. Nano Today 10:417–420

    Article  CAS  Google Scholar 

  105. Palit S, Hussain CM (2018) Biopolymers, nanocomposites and environmental protection: a farreaching review. In: Ahmed S (ed) Bio-based materials for food packaging. Springer Nature Singapore Pte. Ltd., Singapore, pp 217–236

    Chapter  Google Scholar 

  106. Palit S, Hussain CM (2018) Green sustainability, nanotechnology and advanced materials—a critical overview and a vision for the future (Chap. 1). In: Ahmed S, Hussain CM (eds) Green and sustainable advanced materials-applications, vol 2. Wiley Scrivener Publishing, Beverley, pp 1–18

    Google Scholar 

  107. Rauwel P et al (2015) Silver nanoparticles: synthesis, properties, and applications. In: Advances in materials science and engineering. Hindawi

    Google Scholar 

  108. Chandrika UG et al (2006) Hypoglycaemic action of the flavonoid fraction of. Afr J Tradit Complement Altern Med 3(2):42–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farheen Naz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karki, Y., Verma, S.S., Naz, F. (2023). Biological Nanomaterials and Their Development. In: Khan, T., Jawaid, M., Ahmad, K.A., Singh, B. (eds) Nanomaterials: The Building Blocks of Modern Technology. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-4149-0_4

Download citation

Publish with us

Policies and ethics