Skip to main content

Effects of Emotional Stress on Astrocytes and Their Implications in Stress-Related Disorders

  • Chapter
  • First Online:
Psychiatry and Neuroscience Update - Vol. II

Abstract

Stress is a major risk factor in the etiology of several psychiatric diseases, such as anxiety disorders and depression. On the other hand, a growing body of evidence has demonstrated that astrocytes play a pivotal role in the normal functioning of the nervous system. Hence, understanding the effects of stress on astrocytes is crucial for a better comprehension of stress-related mental disorders. Here, we describe the evidence showing astrocyte changes induced by stress in animals and how this plasticity could operate to induce behavioral sequelae. In addition, human data linking astrocytes with psychiatric disorders related to stress are also discussed. Altogether, the data indicate that both chronic and acute stressors are capable of changing the morphology and function of astrocytes in the brain areas that are known to play a critical role in emotional processing, such as the prefrontal cortex, hippocampus, and amygdala. Furthermore, different lines of evidence suggest that astrocyte plasticity may contribute to the behavioral consequences of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQP4:

Aquaporin 4

ATP:

Adenosine triphosphate

CUS:

Chronic unpredictable stress

Cx43:

Connexin 43

FGF2:

Astrocytic fibroblast growth factor

GABA:

Gamma aminobutyric acid

GFAP:

Glial fibrillary acidic protein

GLAST:

Glutamate aspartate transporter, also known as excitatory amino acid transporter 1 (EAAT1)

GLT-1:

Glutamate transporter-1, also known as excitatory amino acid transporter 2 (EAAT2)

GS:

Glutamine synthetase

IP3:

Inositol triphosphate receptors

S100β:

Calcium-binding protein β

References

  1. Christoffel DJ, Golden SA, Russo SJ. Structural and synaptic plasticity in stress-related disorders. Rev Neurosci. 2011;22(5):535–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davidson RJ, McEwen BS. Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci. 2012;15(5):689–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giachero M, Calfa GD, Molina VA. Hippocampal structural plasticity accompanies the resulting contextual fear memory following stress and fear conditioning. Learn Mem. 2013;20(11):611–6.

    Article  PubMed  Google Scholar 

  4. Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A. 2005;102(26):9371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martijena ID, Molina VA. The influence of stress on fear memory processes. Braz J Med Biol Res. 2012;45(4):308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007;164(10):1476–88.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hilgetag CC, Barbas H. Are there ten times more glia than neurons in the brain? Brain Struct Funct. 2009;213(4–5):365–6.

    Article  PubMed  Google Scholar 

  8. Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia. 2014;62(9):1377–91.

    Article  PubMed  Google Scholar 

  9. Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22(5):208–15.

    Article  CAS  PubMed  Google Scholar 

  10. Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013;14(11):1262–76.

    Article  CAS  PubMed  Google Scholar 

  11. Delpech JC, Madore C, Nadjar A, Joffre C, Wohleb ES, Layé S. Microglia in neuronal plasticity: influence of stress. Neuropharmacol. 2015;96(Pt A):19–28.

    Article  CAS  Google Scholar 

  12. Edgar N, Sibille E. A putative functional role for oligodendrocytes in mood regulation. Transl Psychiatry. 2012;2:e109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35.

    Article  PubMed  Google Scholar 

  14. Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol. 2011;93(3):421–43.

    Article  CAS  PubMed  Google Scholar 

  15. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG. Synaptic islands defined by the territory of a single astrocyte. J Neurosci. 2007;27(24):6473–7.

    Article  CAS  PubMed  Google Scholar 

  16. Ogata K, Kosaka T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience. 2002;113(1):221–33.

    Article  CAS  PubMed  Google Scholar 

  17. Bernardinelli Y, Muller D, Nikonenko I. Astrocyte-synapse structural plasticity. Neural Plast. 2014;2014:232105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29(10):3276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu Q, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell. 2013;12(3):342–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Biol Psychiatry. 2008;64(10):863–70.

    Article  Google Scholar 

  21. Kimelberg HK. Functions of mature mammalian astrocytes: a current view. Neuroscientist. 2010;16(1):79–106.

    Article  CAS  PubMed  Google Scholar 

  22. Perea G, Araque A. GLIA modulates synaptic transmission. Brain Res Rev. 2010;63(1–2):93–102.

    Article  CAS  PubMed  Google Scholar 

  23. Haydon PG, Nedergaard M. How do astrocytes participate in neural plasticity? Cold Spring Harb Perspect Biol. 2014;7(3):a020438.

    Google Scholar 

  24. McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci. 2010;1186:190–222.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koolhaas JM, Bartolomucci A, Buwalda B, de Boer SF, Flügge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G, Sgoifo A, Steimer T, Stiedl O, van Dijk G, Wöhr M, Fuchs E. Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev. 2011;35(5):1291–301.

    Article  CAS  PubMed  Google Scholar 

  26. Franklin TB, Saab BJ, Mansuy IM. Neural mechanisms of stress resilience and vulnerability. Neuron. 2012;75(5):747–61.

    Article  CAS  PubMed  Google Scholar 

  27. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35(1):169–91.

    Article  PubMed  Google Scholar 

  28. Guimaraes F, Joca SR, Padovani CM, Molina VA. Mood disorders. In: Neurobiology of mental disorders. Nova Science Publishers: New York, 2006, p. 95–124.

    Google Scholar 

  29. Edwards S, Baynes BB, Carmichael CY, Zamora-Martinez ER, Barrus M, Koob GF, Gilpin NW. Traumatic stress reactivity promotes excessive alcohol drinking and alters the balance of prefrontal cortex-amygdala activity. Transl Psychiatry. 2013;3:e296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Papp M, Gruca P, Lason-Tyburkiewicz M, Litwa E, Willner P. Effects of chronic mild stress on the development of drug dependence in rats. Behav Pharmacol. 2014;25(5–6):518–31.

    CAS  PubMed  Google Scholar 

  31. Bazak N, Kozlovsky N, Kaplan Z, Matar M, Golan H, Zohar J, Richter-Levin G, Cohen H. Pre-pubertal stress exposure affects adult behavioral response in association with changes in circulating corticosterone and brain-derived neurotrophic factor. Psychoneuroendocrinology. 2009;34(6):844–58.

    Google Scholar 

  32. Bignante A, Paglini G, Molina VA. Previous stress exposure enhances both anxiety-like behaviour and p 35 levels in the basolateral amygdala complex: modulation by midazolam. Eur Neuropsychopharmacol. 2010;20(6):388–97.

    Article  CAS  PubMed  Google Scholar 

  33. Elizalde N, García-García AL, Totterdell S, Gendive N, Venzala E, Ramirez MJ, Del Rio J, Tordera RM. Sustained stress-induced changes in mice as a model for chronic depression. Psychopharmacology. 2010;210(3):393–406.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu S, Shi R, Wang J, Wang JF, Li XM. Unpredictable chronic mild stress not chronic restraint stress induces depressive behaviours in mice. Neuroreport. 2014;25(14):1151–5.

    Article  CAS  PubMed  Google Scholar 

  35. Reichenbach A, Derouiche A, Kirchhoff F. Morphology and dynamics of perisynaptic glia. Brain Res Rev. 2010;63(1–2):11–25.

    Article  PubMed  Google Scholar 

  36. Haber M, Zhou L, Murai KK. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci. 2006;26(35):8881–91.

    Article  CAS  PubMed  Google Scholar 

  37. Rodnight RB, Gottfried C. Morphological plasticity of rodent astroglia. J Neurochem. 2013;124(3):263–75.

    Article  CAS  PubMed  Google Scholar 

  38. Saab AS, Neumeyer A, Jahn HM, Cupido A, Šimek AA, Boele HJ, Scheller A, Le Meur K, Götz M, Monyer H, Sprengel R, Rubio ME, Deitmer JW, De Zeeuw CI, Kirchhoff F. Bergmann glial AMPA receptors are required for fine motor coordination. Science. 2012;337(6095):749–53.

    Article  CAS  PubMed  Google Scholar 

  39. Theodosis DT, Poulain DA, Oliet SH. Activity-dependent structural and functional plasticity of astrocyte–neuron interactions. Physiol Rev. 2008;88(3):983–1008.

    Article  CAS  PubMed  Google Scholar 

  40. Weinstein DE, Shelanski ML, Liem RK. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J Cell Biol. 1991;112(6):1205–13.

    Article  CAS  PubMed  Google Scholar 

  41. Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res. 2004;124(2):114–23.

    Article  CAS  PubMed  Google Scholar 

  42. Czéh B, Simon M, Schmelting B, Hiemke C, Fuchs E. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology. 2006;31(8):1616–26.

    Article  PubMed  CAS  Google Scholar 

  43. Tynan RJ, Beynon SB, Hinwood M, Johnson SJ, Nilsson M, Woods JJ. Walker FR Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol. 2013;126(1):75–91.

    Article  CAS  PubMed  Google Scholar 

  44. Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. 2008;64(10):863–70.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu Q, Li B, Zhu HY, Wang YQ, Yu J, Wu GC. Clomipramine treatment reversed the glial pathology in a chronic unpredictable stress-induced rat model of depression. Eur Neuropsychopharmacol. 2009;19(11):796–805.

    Article  CAS  PubMed  Google Scholar 

  46. Liu Q, Li B, Zhu HY, Wang YQ, Yu J, Wu GC. Glia atrophy in the hippocampus of chronic unpredictable stress-induced depression model rats is reversed by electroacupuncture treatment. J Affect Disord. 2011;128(3):309–13.

    Article  CAS  PubMed  Google Scholar 

  47. Ye Y, Wang G, Wang H, Wang X. Brain-derived neurotrophic factor (BDNF) infusion restored astrocytic plasticity in the hippocampus of a rat model of depression. Neurosci Lett. 2011;503(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  48. Sun JD, Liu Y, Yuan YH, Li J, Chen NH. Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology. 2012;37(5):1305–20.

    Article  CAS  PubMed  Google Scholar 

  49. Li LF, Yang J, Ma SP, Qu R. Magnolol treatment reversed the glial pathology in an unpredictable chronic mild stress-induced rat model of depression. Eur J Pharmacol. 2013;711(1–3):42–9.

    CAS  PubMed  Google Scholar 

  50. Gosselin RD, Gibney S, O’Malley D, Dinan TG, Cryan JF. Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience. 2009;159(2):915–25.

    Article  CAS  PubMed  Google Scholar 

  51. Kassem MS, Lagopoulos J, Stait-Gardner T, Price WS, Chohan TW, Arnold JC, Hatton SN, Bennett MR. Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses. Mol Neurobiol. 2013;47(2):645–61.

    Article  CAS  PubMed  Google Scholar 

  52. Araya-Callís C, Hiemke C, Abumaria N, Flugge G. Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology. 2012;224(1):209–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry. 2010;15(5):501–11.

    Article  CAS  PubMed  Google Scholar 

  54. Jang S, Suh SH, Yoo HS, Lee YM, Oh S. Changes in iNOS, GFAP and NR1 expression in various brain regions and elevation of sphingosine-1-phosphate in serum after immobilized stress. Neurochem Res. 2008;33(5):842–51.

    Article  CAS  PubMed  Google Scholar 

  55. Kwon MS, Seo YJ, Lee JK, Lee HK, Jung JS, Jang JE, Park SH, Suh HW. The repeated immobilization stress increases IL-1beta immunoreactivities in only neuron, but not astrocyte or microglia in hippocampal CA1 region, striatum and paraventricular nucleus. Neurosci Lett. 2008;430(3):258–63.

    Article  CAS  PubMed  Google Scholar 

  56. Imbe H, Kimura A, Donishi T, Kaneoke Y. Chronic restraint stress decreases glial fibrillary acidic protein and glutamate transporter in the periaqueductal gray matter. Neuroscience. 2012;223:209–18.

    Article  CAS  PubMed  Google Scholar 

  57. Imbe H, Kimura A, Donishi T, Kaneoke Y. Effects of restraint stress on glial activity in the rostral ventromedial medulla. Neuroscience. 2013;241:10–21.

    Article  CAS  PubMed  Google Scholar 

  58. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793(6):1008–22.

    Article  CAS  PubMed  Google Scholar 

  59. Rong H, Wang G, Liu T, Wang H, Wan Q, Weng S. Chronic mild stress induces fluoxetine-reversible decreases in hippocampal and cerebrospinal fluid levels of the neurotrophic factor S100B and its specific receptor. Int J Mol Sci. 2010;11(12):5310–22.

    Google Scholar 

  60. Sugama S, Takenouchi T, Sekiyama K, Kitani H, Hashimoto M. Immunological responses of astroglia in the rat brain under acute stress: interleukin 1 beta co-localized in astroglia. Neuroscience. 2011;192:429–37.

    Google Scholar 

  61. Xia L, Zhai M, Wang L, Miao D, Zhu X, Wang W. FGF2 blocks PTSD symptoms via an astrocyte-based mechanism. Behav Brain Res. 2013;256:472–80.

    Article  CAS  PubMed  Google Scholar 

  62. Margis R, Zanatto VC, Tramontina F, Vinade E, Lhullier F, Portela LV, Souza DO, Dalmaz C, Kapczinski F, Gonçalves CA. Changes in S100B cerebrospinal fluid levels of rats subjected to predator stress. Brain Res. 2004;1028(2):213–8.

    Article  CAS  PubMed  Google Scholar 

  63. Scaccianoce S, Del Bianco P, Pannitteri G, Passarelli F. Relationship between stress and circulating levels of S100B protein. Brain Res. 2004;1004(1–2):208–11.

    Article  CAS  PubMed  Google Scholar 

  64. Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, Kaufer D. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. Elife. 2013;2:e00362.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ponomarev I, Rau V, Eger EI, Harris RA, Fanselow MS. Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder. Neuropsychopharmacology. 2010;35(6):1402–11.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Daskalakis NP, Yehuda R, Diamond DM. Animal models in translational studies of PTSD. Psychoneuroendocrinology. 2013;38(9):1895–911.

    Google Scholar 

  67. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, Fang YY, Zhang J, Li SJ, Xiong WC, Yan HC, Gao YB, Liu JH, Li XW, Sun LR, Zeng YN, Zhu XH, Gao TM. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19(6):773–7.

    Article  CAS  PubMed  Google Scholar 

  68. Domin H, Szewczyk B, Woźniak M, Wawrzak-Wleciał A, Śmiałowska M. Antidepressant-like effect of the mGluR5 antagonist MTEP in an astroglial degeneration model of depression. Behav Brain Res. 2014;273:23–33.

    Article  CAS  PubMed  Google Scholar 

  69. Lee Y, Son H, Kim G, Kim S, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ. Glutamine deficiency in the prefrontal cortex increases depressive-like behaviours in male mice. J Psychiatry Neurosci. 2013;38(3):183–91.

    Article  PubMed  PubMed Central  Google Scholar 

  70. John CS, Smith KL, Van’t Veer A, Gompf HS, Carlezon Jr WA, Cohen BM, Öngür D, Bechtholt-Gompf AJ. Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology. 2012;37(11):2467–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abu-Ghanem Y, Cohen H, Buskila Y, Grauer E, Amitai Y. Enhanced stress reactivity in nitric oxidesynthase type 2 mutant mice: findings in support of astrocytic nitrosative modulation of behavior. Neuroscience. 2008;156(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  72. Petravicz J, Boyt KM, McCarthy KD. Astrocyte IP3R2-dependent Ca(2+) signaling is not a major modulator of neuronal pathways governing behavior. Front Behav Neurosci. 2014;8:384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Li D, Agulhon C, Schmidt E, Oheim M, Ropert N. New tools for investigating astrocyte-to-neuron communication. Front Cell Neurosci. 2013;7:193.

    PubMed  PubMed Central  Google Scholar 

  74. Tanaka M, Shih PY, Gomi H, Yoshida T, Nakai J, Ando R, Furuichi T, Mikoshiba K, Semyanov A, Itohara S. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses. Mol Brain. 2013;6:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2011;13(1):22–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rodriguez Manzanares P, Nora I, Carrer H, Molina VA. Prior stress facilitates fear memory, attenuates GABAergic inhibition and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci. 2005;25(38):8725–34.

    Article  PubMed  CAS  Google Scholar 

  77. Yoon BE, Lee CJ. GABA as a rising gliotransmitter. Front Neural Circuits. 2014;8:141.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liu ZP, Song C, Wang M, He Y, Xu XB, Pan HQ, Chen WB, Peng WJ, Pan BX. Chronic stress impairs GABAergic control of amygdala through suppressing the tonic GABAA receptor currents. Mol Brain. 2014;7:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Christian CA, Huguenard JR. Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling. Proc Natl Acad Sci U S A. 2013;110(50):20278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Farb CR, Chang W, Ledoux JE. Ultrastructural characterization of noradrenergic axons and Beta-adrenergic receptors in the lateral nucleus of the amygdala. Front Behav Neurosci. 2010;4:162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Aoki C, Venkatesan C, Go CG, Forman R, Kurose H. Cellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons. Cereb Cortex. 1998;8(3):269–77.

    Article  CAS  PubMed  Google Scholar 

  82. Bohn MC, Howard E, Vielkind U, Krozowski Z. Glial cells express both mineralocorticoid and glucocorticoid receptors. J Steroid Biochem Mol Biol. 1991;40(1–3):105–11.

    Article  CAS  PubMed  Google Scholar 

  83. Cintra A, Bhatnagar M, Chadi G, Tinner B, Lindberg J, Gustafsson JA, Agnati LF, Fuxe K. Glial and neuronal glucocorticoid receptor immunoreactive cell populations in developing, adult, and aging brain. Ann N Y Acad Sci. 1994;746:42–61.

    Article  CAS  PubMed  Google Scholar 

  84. Wang Q, Verweij EW, Krugers HJ, Joels M, Swaab DF, Lucassen PJ. Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain Struct Funct. 2014;219(5):1615–26.

    Article  CAS  PubMed  Google Scholar 

  85. Wang Q, Van Heerikhuize J, Aronica E, Kawata M, Seress L, Joels M, Swaab DF, Lucassen PJ. Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol Aging. 2013;34(6):1662–73.

    Article  CAS  PubMed  Google Scholar 

  86. Komatsuzaki Y, Hatanaka Y, Murakami G, Mukai H, Hojo Y, Saito M, Kimoto T, Kawato S. Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus. PLoS One. 2012;7(4):e34124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chatterjee S, Sikdar SK. Corticosterone treatment results in enhanced release of peptidergic vesicles in astrocytes via cytoskeletal rearrangements. Glia. 2013;61(12):2050–62.

    Article  PubMed  Google Scholar 

  88. O’Callaghan JP, Brinton RE, McEwen BS. Glucocorticoids regulate the synthesis of glial fibrillary acidic protein in intact and adrenalectomized rats but do not affect its expression following brain injury. J Neurochem. 1991;57(3):860–9.

    Article  PubMed  Google Scholar 

  89. Nichols NR, Osterburg HH, Masters JN, Millar SL, Finch CE. Messenger RNA for glial fibrillary acidic protein is decreased in rat brain following acute and chronic corticosterone treatment. Brain Res Mol Brain Res. 1990;7(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  90. Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron. 2014;82(6):1263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M. α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium. 2013;54(6):387–94.

    Article  CAS  PubMed  Google Scholar 

  92. Mobley PL, Combs DL. Norepinephrine-mediated protein phosphorylation in astrocytes. Brain Res Bull. 1992;29(3–4):289–95.

    Article  CAS  PubMed  Google Scholar 

  93. Takemura M, Gomi H, Colucci-Guyon E, Itohara S. Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice. J Neurosci. 2002;22(16):6972–9.

    CAS  PubMed  Google Scholar 

  94. Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets. 2013;14(11):1225–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Torres-Platas SG, Hercher C, Davoli MA, Maussion G, Labonté B, Turecki G, Mechawar N. Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology. 2011;36(13):2650–8.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Müller MB, Lucassen PJ, Yassouridis A, Hoogendijk WJ, Holsboer F, Swaab DF. Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. Eur J Neurosci. 2001;14(10):1603–12.

    Article  PubMed  Google Scholar 

  97. Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, Rajkowska G. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry. 2000;48(8):861–73.

    Article  CAS  PubMed  Google Scholar 

  98. Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, Stockmeier CA. Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord. 2010;127(1–3):230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gos T, Schroeter ML, Lessel W, Bernstein HG, Dobrowolny H, Schiltz K, Bogerts B, Steiner J. S100B-immunopositive astrocytes and oligodendrocytes in the hippocampus are differentially afflicted in unipolar and bipolar depression: a postmortem study. J Psychiatr Res. 2013;47(11):1694–9.

    Article  PubMed  Google Scholar 

  100. Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, Hellemann G, Vinters HV. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord. 2010;12(5):541–9.

    Article  PubMed  Google Scholar 

  101. Hamidi M, Drevets WC, Price JL. Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry. 2004;55(6):563–9.

    Article  PubMed  Google Scholar 

  102. Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry. 2011;16(6):634–46.

    Article  CAS  PubMed  Google Scholar 

  103. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney Jr WE, Akil H, Watson SJ, Jones EG. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci U S A. 2005;102(43):15653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Miguel-Hidalgo JJ, Wilson BA, Hussain S, Meshram A, Rajkowska G, Stockmeier CA. Reduced connexin 43 immunolabeling in the orbitofrontal cortex in alcohol dependence and depression. J Psychiatr Res. 2014;55:101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rajkowska G, Hughes J, Stockmeier CA, Javier Miguel-Hidalgo J, Maciag D. Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder. Biol Psychiatry. 2013;73(7):613–21.

    Article  PubMed  Google Scholar 

  106. Kryger R, Wilce PA. The effects of alcoholism on the human basolateral amygdala. Neuroscience. 2010;167(2):361–71.

    Article  CAS  PubMed  Google Scholar 

  107. Schroeter ML, Abdul-Khaliq H, Krebs M, Diefenbacher A, Blasig IE. Serum markers support disease-specific glial pathology in major depression. J Affect Disord. 2008;111(2–3):271–80.

    Article  CAS  PubMed  Google Scholar 

  108. Bergh CD, Bäckström M, Axelsson K, Jönsson H, Johnsson P. Protein S100B after cardiac surgery: an indicator of long-term anxiety? Scand Cardiovasc J. 2007;41(2):109–13.

    Article  CAS  PubMed  Google Scholar 

  109. Li X, Wilder-Smith CH, Kan ME, Lu J, Cao Y, Wong RK. Combat-training stress in soldiers increases S100B, a marker of increased blood-brain-barrier permeability, and induces immune activation. Neuro Endocrinol Lett. 2014;35(1):58–63.

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from MinCyT-Cordoba, SECYT-UNC, CONICET, and Agencia Nacional de Promoción Científica y Tecnológica–FONCYT (Argentina) to Victor A Molina and SECYT-UNC, CONICET, and Agencia Nacional de Promoción Científica y Tecnológica–FONCYT (Argentina) to Gaston Calfa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Luis Bender PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bender, C.L., Calfa, G.D., Molina, V.A. (2017). Effects of Emotional Stress on Astrocytes and Their Implications in Stress-Related Disorders. In: Gargiulo, P., Mesones-Arroyo, H. (eds) Psychiatry and Neuroscience Update - Vol. II. Springer, Cham. https://doi.org/10.1007/978-3-319-53126-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53126-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53125-0

  • Online ISBN: 978-3-319-53126-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics