Skip to main content

Lessons and Challenges in Land Change Modeling Derived from Synthesis of Cross-Case Comparisons

  • Chapter
  • First Online:
Trends in Spatial Analysis and Modelling

Abstract

This chapter presents the lessons and challenges in land change modeling that emerged from years of reflection and numerous panel discussions at scientific conferences concerning a collaborative cross-case comparison in which the authors have participated. We summarize the lessons as nine challenges grouped under three themes: mapping, modeling, and learning. The mapping challenges are: to prepare data appropriately, to select relevant resolutions, and to differentiate types of land change. The modeling challenges are: to separate calibration from validation, to predict small amounts of change, and to interpret the influence of quantity error. The learning challenges are: to use appropriate map comparison measurements, to learn about land change processes, and to collaborate openly. To quantify the pattern validation of predictions of change, we recommend that modelers report as a percentage of the spatial extent the following measurements: misses, hits, wrong hits and false alarms. The chapter explains why the lessons and challenges are essential for the future research agenda concerning land change modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldwaik SZ, Pontius RG Jr (2013) Map errors that could account for deviations from a uniform intensity of land change. Int J Geogr Inf Sci. doi:10.1080/13658816.2013.787618

  • Aldwaik SZ, Onsted JA, Pontius RG Jr (2014) Behavior-based aggregation of land categories for temporal change analysis. Int J Appl Earth Obs Geoinf 35:229–238

    Article  Google Scholar 

  • Boissau S, Castella J-C (2003) Constructing a common representation of local institutions and land use systems through simulation-gaming and multi-agent modeling in rural areas of Northern Vietnam: the SAMBA-Week methodology. Simul Gaming 34(3):342–347

    Article  Google Scholar 

  • Box GEP (1979) Robustness in the strategy of scientific model building. In: Launer RL, Wilkinson GN (eds) Robustness in statistics. Academic, New York, pp 201–236

    Chapter  Google Scholar 

  • Brown DG, Page S, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19(1):153–174

    Article  Google Scholar 

  • Brown, D.G., Band, L.E., Green, K.O., Irwin, E.G., Jain, A., Lambin, E.F., Pontius Jr, R.G., Seto, K.C., Turner II, B.L., Verburg, P.H. (2013). Advancing land change modeling: opportunities and research requirements. The National Academies Press: Washington, DC. 145. http://www.nap.edu/catalog.php?record_id=18385

    Google Scholar 

  • Castella J-C, Verburg PH (2007) Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecol Model 10(1):410–420

    Article  Google Scholar 

  • Castella J-C, Boissau S, Trung TN, Quang DD (2005a) Agrarian transition and lowland-upland interactions in mountain areas in northern Vietnam: application of a multi-agent simulation model. Agric Syst 86(3):312–332

    Article  Google Scholar 

  • Castella J-C, Trung TN, Boissau S (2005b) Participatory simulation of land use changes in the Northern Mountains of Vietnam: the combined use of an agent-based model, a role-playing game, and a geographic information system. Ecol Soc 10(1):27

    Article  Google Scholar 

  • Chen H, Pontius RG Jr (2010) Diagnostic tools to evaluate a spatial land change projection along a gradient of an explanatory variable. Landsc Ecol 25:1319–1331

    Article  Google Scholar 

  • de Koning GHJ, Verburg PH, Veldkamp TA, Fresco LO (1999) Multi-scale modelling of land use change dynamics in Ecuador. Agric Syst 61:77–93

    Article  Google Scholar 

  • de Nijs TCM, de Niet R, Crommentuijn L (2004) Constructing land-use maps of the Netherlands in 2030. J Environ Manag 72(1–2):35–42

    Article  Google Scholar 

  • Dietzel CK, Clarke KC (2004) Spatial differences in multi-resolution urban automata modeling. Trans GIS 8:479–492

    Article  Google Scholar 

  • Duan Z, Verburg PH, Fengrong Z, Zhengrong Y (2004) Construction of a land-use change simulation model and its application in Haidian District, Beijing. Acta Geograph Sin 59(6):1037–1046. (in Chinese)

    Google Scholar 

  • Enaruvbe G, Pontius RG Jr (2015) Influence of classification errors on intensity analysis of land changes in southern Nigeria. Int J Remote Sens 31(1):244–261

    Article  Google Scholar 

  • Engelen G, White R, de Nijs T (2003) The Environment Explorer: spatial support system for integrated assessment of socio-economic and environmental policies in the Netherlands. Integr Assess 4(2):97–105

    Article  Google Scholar 

  • Fotsing E, Verburg PH, De Groot WT, Cheylan J-P, Tchuenté M (2013) Un modèle intégré pour explorer les trajectoires d’utilisation de l’espace. ARIMA J 16:1–28

    Google Scholar 

  • Goldstein NC (2004) Brains vs. Brawn – comparative strategies for the calibration of a cellular automata-based urban growth model. In: Atkinson P, Foody G, Darby S, Wu F (eds) GeoDynamics. CRC Press, Boca Raton, pp 249–272

    Chapter  Google Scholar 

  • Gutierrez-Velez V, Pontius RG Jr (2012) Influence of carbon mapping and land change modelling on the prediction of carbon emissions from deforestation. Environ Conserv 39(4):325–336

    Article  Google Scholar 

  • Hilferink M, Rietveld P (1999) Land use scanner: an integrated GIS based model for long term projections of land use in urban and rural areas. J Geogr Syst 1(2):155–177

    Article  Google Scholar 

  • Hoymann J (2010) Spatial allocation of future residential land use in the Elbe River Basin. Environ Plan B: Plan Des 37(5):911–928

    Article  Google Scholar 

  • Kok K, Veldkamp TA (2001) Evaluating impact of spatial scales on land use pattern analysis in Central America. Agric Ecosyst Environ 85(1–3):205–221

    Article  Google Scholar 

  • Kok K, Farrow A, Veldkamp TA, Verburg PH (2001) A method and application of multi-scale validation in spatial land use models. Agric Ecosyst Environ 85(1–3):223–238

    Article  Google Scholar 

  • Koomen, E, Borsboom-van Beurden, J. (2011). Land-use modelling in planning practice. GeoJ Libr 101, Dordrecht: Springer

    Google Scholar 

  • Kuhlman T, Diogo V, Koomen E (2013) Exploring the potential of reed as a bioenergy crop in the Netherlands. Biomass Bioenergy 55:41–52

    Article  Google Scholar 

  • Laney RM (2002) Disaggregating induced intensification for land-change analysis: a case study from Madagascar. Ann Assoc Am Geogr 92(4):702–726

    Article  Google Scholar 

  • Loonen W, Koomen E (2009) Calibration and validation of the land use scanner allocation algorithms, PBL publication number 550026002. Netherlands Environmental Assessment Agency (PBL), Bilthoven

    Google Scholar 

  • McConnell W, Sweeney SP, Mulley B (2004) Physical and social access to land: spatio-temporal patterns of agricultural expansion in Madagascar. Agric Ecosyst Environ 101(2–3):171–184

    Article  Google Scholar 

  • Moulds S, Buytaert W, Mijic A (2015) An open and extensible framework for spatially explicit land use change modelling: the lulcc R package. Geosci Model Dev 8:3215–3229

    Article  Google Scholar 

  • Paegelow M, Camacho Olmedo MT, Houet T, Mas J-F, Pontius RG Jr (2013) Land change modeling: moving beyond projections. Int J Geogr Inf Sci 27(9):1691–1695

    Article  Google Scholar 

  • Pijanowski BC, Gage SH, Long DT (2000) A land transformation model: integrating policy, socioeconomics and environmental drivers using a geographic information system. In: Harris L, Sanderson J (eds) Landscape ecology: a top down approach. CRC Press, Boca Raton, pp 183–198

    Google Scholar 

  • Pijanowski BC, Brown DG, Manik G, Shellito B (2002) Using neural nets and GIS to forecast land use changes: a land transformation model. Comput Environ Urban Syst 26(6):553–575

    Article  Google Scholar 

  • Pijanowski BC, Pithadia S, Sellito BA, Alexandridis K (2005) Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int J Geogr Inf Sci 19(2):197–215

    Article  Google Scholar 

  • Pontius RG Jr, Connors J (2009) Range of categorical associations for comparison of maps with mixed pixels. Photogramm Eng Remote Sens 75(8):963–969

    Article  Google Scholar 

  • Pontius RG Jr, Lippitt CD (2006) Can error explain map differences over time? Cartogr Geogr Inf Sci 33(2):159–171

    Article  Google Scholar 

  • Pontius RG Jr, Malanson J (2005) Comparison of the structure and accuracy of two land change models. Int J Geogr Inf Sci 19(2):243–265

    Article  Google Scholar 

  • Pontius RG Jr, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32(15):4407–4429

    Article  Google Scholar 

  • Pontius RG Jr, Neeti N (2010) Uncertainty in the difference between maps of future land change scenarios. Sustain Sci 5:39–50

    Article  Google Scholar 

  • Pontius RG Jr, Parmentier B (2014) Recommendations for using the Relative Operating Characteristic (ROC). Landsc Ecol 29(3):367–382

    Article  Google Scholar 

  • Pontius RG Jr, Petrova S (2010) Assessing a predictive model of land change using uncertain data. Environ Model Softw 25(3):299–309

    Article  Google Scholar 

  • Pontius RG Jr, Santacruz A (2014) Quantity, exchange and shift components of differences in a square contingency table. Int J Remote Sens 35(21):7543–7554

    Article  Google Scholar 

  • Pontius RG Jr, Si K (2014) The total operating characteristic to measure diagnostic ability for multiple thresholds. Int J Geogr Inf Sci 28(3):570–583

    Article  Google Scholar 

  • Pontius RG Jr, Cornell J, Hall C (2001) Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agric Ecosyst Environ 85(1–3):191–203

    Article  Google Scholar 

  • Pontius RG Jr, Huffaker D, Denman K (2004a) Useful techniques of validation for spatially explicit land-change models. Ecol Model 179(4):445–461

    Article  Google Scholar 

  • Pontius RG Jr, Shusas E, McEachern M (2004b) Detecting important categorical land changes while accounting for persistence. Agric Ecosyst Environ 101(2–3):251–268

    Article  Google Scholar 

  • Pontius RG Jr, Walker R, Yao-Kumah R, Arima E, Aldrich S, Caldas M, Vergara D (2007) Accuracy assessment for a simulation model of Amazonian deforestation. Ann Assoc Am Geogr 97(4):677–695

    Article  Google Scholar 

  • Pontius RG Jr, Boersma W, Castella J-C, Clarke K, de Nijs T, Dietzel C, Duan Z, Fotsing E, Goldstein N, Kok K, Koomen E, Lippitt CD, McConnell W, Mohd Sood A, Pijanowski B, Pithadia S, Sweeney S, Trung TN, Veldkamp AT, Verburg PH (2008) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42(1):11–47

    Article  Google Scholar 

  • Pontius RG Jr, Peethambaram S, Castella J-C (2011) Comparison of three maps at multiple resolutions: a case study of land change simulation in Cho Don District, Vietnam. Ann Assoc Am Geogr 101(1):45–62

    Article  Google Scholar 

  • Runfola D, Pontius RG Jr (2013) Measuring the temporal instability of land change using the flow matrix. Int J Geogr Inf Sci. doi:10.1080/13658816.2013.792344

  • Silva EA, Clarke KC (2002) Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Comput Environ Urban Syst 26:525–552

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Tan M, Li X, Xie H, Lu C (2005) Urban land expansion and arable land loss in China − a case study of Beijing-Tianjin-Hebei region. Land Use Policy 22(3):187–196

    Article  Google Scholar 

  • Veldkamp AT, Fresco L (1996) CLUE-CR: an integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecol Model 91:231–248

    Article  Google Scholar 

  • Verburg PH, Veldkamp TA (2004) Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landsc Ecol 19:77–98

    Article  Google Scholar 

  • Verburg PH, de Koning GHJ, Kok K, Veldkamp A, Bouma J (1999) A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol Model 116(1):45–61

    Article  Google Scholar 

  • Verburg PH, Soepboer S, Veldkamp TA, Limpiada R, Espaldon V, Sharifah Mastura SA (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manag 30(3):391–405

    Article  Google Scholar 

  • Verburg PH, de Nijs TCM, van Eck JR, Visser H, de Jong K (2004) A method to analyse neighbourhood characteristics of land use patterns. Comput Environ Urban Syst 28(6):667–690

    Article  Google Scholar 

  • Visser H, de Nijs T (2006) The map comparison kit. Environ Model Softw 21(3):346–358

    Article  Google Scholar 

Download references

Acknowledgments

The C.T. DeWit Graduate School for Production Ecology & Resource Conservation of Wageningen University sponsored the first author’s sabbatical, during which he led the collaborative exercise that is the basis for this chapter. The National Science Foundation of the USA supported this work via the grant “Infrastructure to Develop a Human-Environment Regional Observatory (HERO) Network” (Award ID 9978052). Clark Labs (www.clarklabs.org) produces the software TerrSet®, which we used for the GIS analysis. Our colleagues shared valuable insights during several discussion sessions at professional conferences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Gilmore Pontius Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pontius, R.G. et al. (2018). Lessons and Challenges in Land Change Modeling Derived from Synthesis of Cross-Case Comparisons. In: Behnisch, M., Meinel, G. (eds) Trends in Spatial Analysis and Modelling. Geotechnologies and the Environment, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-52522-8_8

Download citation

Publish with us

Policies and ethics