Skip to main content

In Situ High-Temperature X-ray Diffraction of Thin Films: Chemical Expansion and Kinetics

  • Chapter
  • First Online:
Electro-Chemo-Mechanics of Solids

Abstract

This chapter reviews the use of in-situ X-ray diffraction analyses for exploring the chemical expansion produced by oxygen stoichiometry changes in thin oxide films during oxidation and reduction, as well as the kinetics of oxygen exchange at the surface of the films. This technique has demonstated to serve as a non-invasive and very selective complementary tool for fundamental studies on mixed ionic-electronic conducting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The assumption that oxygen defects concentration profile is homogenous in the whole film thickness is not entirely true. In some cases the XRD peaks show a slight broadening after film oxidation, compared to a narrower peak attained after lower pO2 conditions. This is an indication that the film may develop a chemical expansion profile across the thickness depending on the strain imposed by the substrate mismatch.

  2. 2.

    In this heterostructure the GDC interlayer only acts as a barrier to prevent the chemical reaction between LSCF cathode and YSZ electrolyte.

References

  1. Birkholz, M. (2006). Thin film analysis by X-ray scattering. London: Wiley.

    Google Scholar 

  2. Pietsch, U., Holy, V., & Baumbach T. (2013). High-resolution X-ray scattering: From thin films to lateral nanostructures. Berlin: Springer Science & Business Media.

    Google Scholar 

  3. Ohring M. (2001). Materials science of thin films (2nd ed.,). New York: Academic Press.

    Google Scholar 

  4. Poisson, S. D. (1829). Mémoire sur l’équilibre et le movement des corps élastiques: Mém. de l’Acad. Sci. 8(357).

    Google Scholar 

  5. Perry, N. H., Bishop, S. R., & Tuller, H. L. (2014). Tailoring chemical expansion by controlling charge localization: In situ X-ray diffraction and dilatometric study of (La, Sr)(Ga, Ni) O3−δ perovskite. Journal of Material Chemistry A, 2(44), 18906–18916.

    Article  Google Scholar 

  6. Donner, W., Chen, C., Liu, M., Jacobson, A. J., Lee, Y.-L., Gadre, M., et al. (2011). Epitaxial strain-induced chemical ordering in La0.5Sr0.5CoO3−δ films on SrTiO3. Chemistry of Materials, 23(4), 984–988.

    Article  Google Scholar 

  7. Kuru, Y., Marrocchelli, D., Bishop, S. R., Chen, D., Yildiz, B., & Tuller, H. L. (2012). Anomalous chemical expansion behavior of Pr0.2Ce0.8O2−δ thin films grown by pulsed laser deposition. Journal of the Electrochemical Society, 159(11), F799–F803.

    Article  Google Scholar 

  8. Ozawa, M., & Loong, C.-K. (1999). In situ X-ray and neutron powder diffraction studies of redox behavior in CeO2 containing oxide catalysts. Catalysis Today, 50(2), 329–342.

    Article  Google Scholar 

  9. Kuru, Y., Bishop, S. R., Kim, J. J., Yildiz, B., & Tuller, H. L. (2011). Chemomechanical properties and microstructural stability of nanocrystalline Pr-doped ceria: An in situ X-ray diffraction investigation. Solid State Ionics, 193(1), 1–4.

    Article  Google Scholar 

  10. Valentin, O., Millot, F., Blond, E., Richet, N., Julian, A., Véron, E., et al. (2011). Chemical expansion of La0.8Sr0.2Fe0.7Ga0.3O3−δ. Solid State Ionics, 193(1), 23–31.

    Article  Google Scholar 

  11. Grande, T., Tolchard, J. R., & Selbach, S. M. (2012). Anisotropic thermal and chemical expansion in Sr-substituted LaMnO3+δ: implications for chemical strain relaxation. Chemistry of Materials, 24(2), 338–345.

    Article  Google Scholar 

  12. Perry, N. H., Kim, J. J., Bishop, S. R., & Tuller, H. L. (2015). Strongly coupled thermal and chemical expansion in the perovskite oxide system Sr(Ti, Fe)O3−α. Journal of Material Chemistry A, 3(7), 3602–3611.

    Article  Google Scholar 

  13. Hiraiwa, C., Han, D., Kuramitsu, A., Kuwabara, A., Takeuchi, H., Majima, M., et al. (2013). Chemical expansion and change in lattice constant of Y‐doped BaZrO3 by hydration/dehydration reaction and final heat‐treating temperature. Journal of the American Ceramic Society, 96(3), 879–884.

    Article  Google Scholar 

  14. Mba, J.-M. A., Croguennec, L., Basir, N. I., Barker, J., & Masquelier, Ch. (2012). Lithium insertion or extraction from/into tavorite-type LiVPO4F: An in situ X-ray diffraction study. Journal of the Electrochemical Society, 159(8), A1171–A1175.

    Article  Google Scholar 

  15. http://www.inel.fr

  16. Moreno, R., García, P., Zapata, J., Roqueta, J., Chaigneau, J., & Santiso, J. (2013). Chemical strain kinetics induced by oxygen surface exchange in epitaxial films explored by time-resolved x-ray diffraction. Chemistry of Materials, 25(18), 3640–3647.

    Article  Google Scholar 

  17. Bouwmeester, H. J. M., den Otter, M. W., & Boukamp, B. A. (2004). Oxygen transport in La0.6Sr0.4Co1−y Fe y O3−δ. Journal of Solid State Electrochemistry, 8(9), 599–605.

    Article  Google Scholar 

  18. De Souza, R. A., Kilner, J. A., & Walker, J. F. (2000). A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ. Materials Letters, 43(1), 43–52.

    Article  Google Scholar 

  19. Mikkelsen, L., & Skou, E. (2001). Determination of the oxygen chemical diffusion coefficient in perovskites by a thermogravimetric method. Journal of Thermal Analysis and Calorimetry, 64(3), 873–878.

    Article  Google Scholar 

  20. Fischer, E., & Hertz, J. L. (2012). Measurability of the diffusion and surface exchange coefficients using isotope exchange with thin film and traditional samples. Solid State Ionics, 218, 18–24.

    Article  Google Scholar 

  21. Kubicek, M., Cai, Z., Ma, W., Yildiz, B., Hutter, H., & Fleig, J. (2013). Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1−x Sr x CoO3−δ thin films. ACS Nano, 7(4), 3276–3286.

    Article  Google Scholar 

  22. Kushima, A., Yip, S., & Yildiz, B. (2010). Competing strain effects in reactivity of LaCoO3 with oxygen. Physical Review B, 82(11), 115435.

    Article  Google Scholar 

  23. Moreno, R., Zapata, J., Roqueta, J., Bagués, N., & Santiso, J. (2014). Chemical strain and oxidation-reduction kinetics of epitaxial thin films of mixed ionic-electronic conducting oxides determined by X-ray diffraction. Journal of the Electrochemical Society, 161(11), F3046–F3051.

    Article  Google Scholar 

  24. Lankhorst, M. H. R., Bouwmeester, H. J. M., & Verweij, H. (1997). High-temperature coulometric titration of La1−x Sr x CoO3−δ: Evidence for the effect of electronic band structure on nonstoichiometry behavior. Journal of Solid State Chemistry, 133(2), 555–567.

    Article  Google Scholar 

  25. Bishop, S. R., Marrocchelli, D., Chatzichristodoulou, C., Perry, N. H., Mogensen, M. B., Tuller, H. L., et al. (2014). Implications for electrochemical energy storage and conversion devices. Annual Review of Materials Research, 44, 205–239.

    Article  Google Scholar 

  26. Nakamura, T., Petzow, G., & Gauckler, L. J. (1979). Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results. Materials Research Bulletin, 14(5), 649–659.

    Article  Google Scholar 

  27. Preis, W., Bucher, E., & Sitte, W. (2002). Oxygen exchange measurements on perovskites as cathode materials for solid oxide fuel cells. Journal of Power Sources, 106(1), 116–121.

    Article  Google Scholar 

  28. van der Haar, L. M., den Otter, M. W., Morskate, M., Bouwmeester, H. J. M., & Verweij, H. (2002). Chemical diffusion and oxygen surface transfer of La1−x Sr x CoO3−δ studied with electrical conductivity relaxation. Journal of the Electrochemical Society, 149(3), J41–J46.

    Article  Google Scholar 

  29. Chen, X. (2002). Electrical conductivity relaxation studies of an epitaxial La0.5Sr0.5CoO3−δ thin film. Solid State Ionics, 146(3), 405–413.

    Article  Google Scholar 

  30. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. (2011). A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 334(6061), 1383–1385.

    Article  Google Scholar 

  31. Burriel, M., Niedrig, C., Menesklou, W., Wagner, S. F., Santiso, J., & Ivers-Tiffée, E. (2010). BSCF epitaxial thin films: Electrical transport and oxygen surface exchange. Solid State Ionics, 181(13), 602–608.

    Article  Google Scholar 

  32. Ingram, B. J., Eastman, J. A., Chang, K.-C., Kim, S. K., Fister, T. T., Perret, E., et al. (2012). In situ x-ray studies of oxygen surface exchange behavior in thin film La0.6Sr0.4Co0.2Fe0.8O3−δ. Applied Physics Letters, 101(5), 051603.

    Article  Google Scholar 

  33. Biegalski, M. D., Crumlin, E., Belianinov, A., Mutoro, E., Shao-Horn, Y., & Kalinin, S. V. (2014). In situ examination of oxygen non-stoichiometry in La0.80Sr0.20CoO3−δ thin films at intermediate and low temperatures by X-ray diffraction. Applied Physics Letters, 104(16), 161910.

    Article  Google Scholar 

  34. Hopper, E. M., Perret, E., Ingram, B. J., You, H., Chang, K. C., et al. (2015). Oxygen exchange in La0.6Sr0.4Co0.2Fe0.8O3−δ thin-film heterostructures under applied electric potential. The Journal of Physical Chemistry C, 119(34), 19915–19921.

    Article  Google Scholar 

  35. May, S. J., Kim, J.-W., Rondinelli, J. M., Karapetrova, E., Spaldin, N. A., Bhattacharya, A., et al. (2010). Quantifying octahedral rotations in strained perovskite oxide films. Physical Review B, 82(1), 014110.

    Article  Google Scholar 

  36. Sandiumenge, F., Santiso, J., Balcells, L., Konstantinovic, Z., Roqueta, J., Pomar, A., et al. (2013). Competing misfit relaxation mechanisms in epitaxial correlated oxides. Physical Review Letters, 110(10), 107206.

    Article  Google Scholar 

  37. Santiso, J., Balcells, L., Konstantinovic, Z., Roqueta, J., Ferrer, P., Pomar, A., et al. (2013). Thickness evolution of the twin structure and shear strain in LSMO films. Crystal Engineering Communication, 15(19), 3908–3918.

    Article  Google Scholar 

  38. Gazquez, J., Bose, S., Sharma, M., Torija, M. A., Pennycook, S. J., Leighton, C., et al. (2013). Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3−δ thin films. APL Materials, 1(1), 012105.

    Article  Google Scholar 

  39. Estradé, S., Arbiol, J., Peiró, F., Infante, I. C., Sánchez, F., Fontcuberta, J., et al. (2008). Cationic and charge segregation in La2/3Ca1/3MnO3 thin films grown on (001) and (110) SrTiO3. Applied Physics Letters, 93(11), 112505.

    Article  Google Scholar 

  40. Zapata, J. (2016). Ph.D. thesis, Department of Physics, Autonomous University of Barcelona. http://www.tdx.cat/handle/10803/368559

  41. Zapata, J., Burriel, M., García, P., Kilner, J. A., & Santiso, J. (2013). Anisotropic 18 O tracer diffusion in epitaxial films of GdBaCo2O5+δ cathode material with different orientations. Journal of Materials Chemistry A, 1(25), 7408–7414.

    Article  Google Scholar 

Download references

Acknowledgements

Part of the work in this chapter has been funded by Spanish Ministry of Education through MAT2011-29081-C02-01 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Santiso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Santiso, J., Moreno, R. (2017). In Situ High-Temperature X-ray Diffraction of Thin Films: Chemical Expansion and Kinetics. In: Bishop, S., Perry, N., Marrocchelli, D., Sheldon, B. (eds) Electro-Chemo-Mechanics of Solids. Electronic Materials: Science & Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-51407-9_3

Download citation

Publish with us

Policies and ethics