Skip to main content
Log in

X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Here, a systematic experimental study on indium tin oxide (ITO) films is presented to investigate the effects of oxygen partial pressure on the film's electrical properties. The results of Hall measurements show that adding more oxygen in the sputtering gas has negative influences on the electrical conductivity of ITO films. As O2/(O2 + Ar)% in the sputtering gas is increased from 0 to 6.98%, the resistivity of ITO film rises almost exponentially from 7.9 × 10−4 to 4.1 × 10−2 Ω cm, with the carrier density decreasing from 4.8 × 1020 to 5.4 × 1018 cm−3. The origins of these negative effects are discussed with focuses on the concentration of ionized impurities and the scattering of grain barriers. Extensive x-ray photoelectron spectroscopy (XPS) analyses were employed to gain insight into the concentration of ionized impurities, demonstrating a strong correlation between the oxygen vacancy concentration and the carrier density in ITO films as a function of sputtering O2 partial pressure. Other microstructural characterization techniques including x-ray diffraction (XRD), high-magnification scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) analyses were used to evaluate the average grain size of ITO films. For ITO films that have carrier density above 1019 cm−3, scattering on grain boundaries and other crystallographic defects show negligible effects on the carrier transport. The results point to the oxygen vacancy concentration that dictates the carrier density and, thus, the resistivity of magnetron-sputtered ITO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Minami, Thin Solid Films 516, 5822 (2008).

    Article  Google Scholar 

  2. E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, MRS Bulletin 32, 242 (2007).

    Article  Google Scholar 

  3. R.K. Pandey, S. Mishra, and P.K. Bajpai, J. Electron. Mater. 45, 5822 (2016).

    Article  Google Scholar 

  4. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovolt: Res. Appl. 24, 905 (2016).

    Article  Google Scholar 

  5. A.E. Delahoy and S. Guo, Handbook of Photovoltaic Science and Engineering, ed. A. Luque and S. Hegedus (Chichester: Wiley, 2011), p. 716.

    Chapter  Google Scholar 

  6. K. Jeyadheepan, M. Thamilselvan, K. Kim, J. Yi, and C. Sanjeeviraja, J. Alloys Compds. 620, 185 (2015).

    Article  Google Scholar 

  7. Z. Ghorannevis, E. Akbarnejad, A. Salar Elahi, and M. Ghoranneviss, J. Inorg. Organomet. Polym. 25, 1486 (2015).

    Article  Google Scholar 

  8. J.J. Wang, T. Ling, S.Z. Qiao, and X.W. Du ACS Appl. Mater. Interfaces 6, 14718 (2014).

    Article  Google Scholar 

  9. J.L. Pena, E. Hernandez-Rodriguez, V. Rejon, R. Mis-Fernandez, and I. Riech, PVSC IEEE 42nd (2015). doi:10.1109/PVSC.2015.7355894.

  10. D.M. Meysing, C.A. Wolden, M.M. Griffith, H. Mahabaduge, J. Pankow, M.O. Reese, J.M. Burst, W.L. Rance, and T.M. Barnes, J. Vac. Sci. Technol. A 33, 021203 (2015).

    Article  Google Scholar 

  11. D.A. Duncan, J.M. Kephart, K. Horsley, M. Blum, M. Mezher, L. Weinhardt, M. Haming, R.G. Wilks, T. Hofmann, W. Yang, M. Bar, W.S. Sampath, and C. Heske, ACS Appl. Mater. Interfaces 7, 16382 (2015).

    Article  Google Scholar 

  12. J.M. Kephart, R.M. Geisthardt, and W.S. Sampath, Prog. Photovolt: Res. Appl. 23, 1484 (2015).

    Article  Google Scholar 

  13. K. Ellmer, Nat. Photonics 6, 809 (2012).

    Article  Google Scholar 

  14. Q. Gao, M. Li, X. Li, Y. Liu, C.L. Song, J.X. Wang, Q.Y. Liu, J.B. Liu, and G.R. Han, J. Alloys Compds. 550, 144 (2013).

    Article  Google Scholar 

  15. Y. Zhu, R.J. Mendelsberg, J. Zhu, J. Han, and A. Anders, J. Mater. Sci. 48, 3789 (2013).

    Article  Google Scholar 

  16. D. Panda and T.Y. Tseng, J. Mater. Sci. 48, 6849 (2013).

    Article  Google Scholar 

  17. H. Mahdhi, Z. Ben Ayadi, J.L. Gauffier, and K. Djessas, J. Electron. Mater. 45, 557 (2016).

    Article  Google Scholar 

  18. Y. Lu, S. Khan, C.L. Song, K.K. Wang, G.Z. Yuan, W. Li, G.R. Han, and Y. Liu, J. Alloys Compds. 663, 413 (2016).

    Article  Google Scholar 

  19. T. Minami, Semicond. Sci. Technol. 20, S35 (2005).

    Article  Google Scholar 

  20. T.H. Tsai and Y.F. Wu, Microelectron. Eng. 83, 536 (2006).

    Article  Google Scholar 

  21. V. Linss, Surf. Coat. Tech. 290, 43 (2016).

    Article  Google Scholar 

  22. S.M. Joshi and R.A. Gerhardt, J. Mater. Sci. 48, 1465 (2013).

    Article  Google Scholar 

  23. M. Wegener, M. Kato, K. Kakimoto, S. Spallek, E. Spiecker, and A. Roosen, J. Mater. Sci. 50, 6124 (2015).

    Article  Google Scholar 

  24. Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, Vacuum 75, 183 (2004).

    Article  Google Scholar 

  25. E. Terzini, P. Thilakan, and C. Minarini, Mater. Sci. Eng. B 77, 110 (2000).

    Article  Google Scholar 

  26. F. Kurdesau, G. Khripunov, A.F. da Cunha, M. Kaelin, and A.N. Tiwari, J. Non-Cryst. Solids 352, 1466 (2006).

    Article  Google Scholar 

  27. K.S. Tseng and Y.L. Lo, Appl. Surf. Sci. 285P, 157 (2013).

    Article  Google Scholar 

  28. C.G. Choi, K. No, W.J. Lee, H.G. Kim, S.O. Jung, W.J. Lee, W.S. Kim, S.J. Kim, and C. Yoon, Thin Solid Films 258, 274 (1995).

    Article  Google Scholar 

  29. Y.J. Kim, S.B. Jin, S.I. Kim, Y.S. Choi, I.S. Choi, and J.G. Han, Thin Solid Films 518, 6241 (2010).

    Article  Google Scholar 

  30. A. Chen, K. Zhu, H. Zhong, Q. Shao, and G. Ge, Sol. Energy Mater. Sol. Cells 120, 157 (2014).

    Article  Google Scholar 

  31. H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, and D.B. Chrisey, J. Appl. Phys. 86, 6451 (1999).

    Article  Google Scholar 

  32. C. Ophus, E. Luber, and D. Mitlin, Acta Mater. 57, 1327 (2009).

    Article  Google Scholar 

  33. C. Ophus, T. Ewalds, E.J. Luber, and D. Mitlin, Acta Mater. 58, 5150 (2010).

    Article  Google Scholar 

  34. K. Okada, S. Kohiki, S. Luo, D. Sekiba, S. Ishii, M. Mitome, A. Kohno, T. Tajiri, and F. Shoji, Thin Solid Films 519, 3557 (2011).

    Article  Google Scholar 

  35. J. Gwamuri, M. Marikkannan, J. Mayandi, P.K. Bowen, and J.M. Pearce, Materials 9, 63 (2016).

    Article  Google Scholar 

  36. Y.Y. Chen, J.C. Hsu, C.Y. Lee, and P.W. Wang, J. Mater. Sci. 48, 1225 (2013).

    Article  Google Scholar 

  37. C. Li, J. Li, S.S. Li, J.B. Xia, and S.H. Wei, Appl. Phys. Lett. 100, 262109 (2012).

    Article  Google Scholar 

  38. S.V. Pammi, A. Chanda, J.K. Ahn, J.H. Park, C.R. Cho, W.J. Lee, and S.G. Yoon, J. Electrochem. Soc. 157, H937 (2010).

    Article  Google Scholar 

  39. F.M. Simanjuntak, D. Panda, T.L. Tsai, C.A. Lin, K.H. Wei, and T.Y. Tseng, J. Mater. Sci. 50, 6961 (2015).

    Article  Google Scholar 

  40. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, and L.S. Wen, Appl. Surf. Sci. 158, 134 (2000).

    Article  Google Scholar 

  41. J.S. Kim, P.K.H. Ho, D.S. Thomas, R.H. Friend, F. Cacialli, G.W. Bao, and S.F.Y. Li, Chem. Phys. Lett. 315, 307 (1999).

    Article  Google Scholar 

  42. T. Stapinski, E. Leja, and T. Pisarkiewicz, J. Phys. D: Appl. Phys. 17, 407 (1984).

    Article  Google Scholar 

  43. K. Ellmer and R. Mientus, Thin Solid Films 516, 4620 (2008).

    Article  Google Scholar 

  44. W. Wohlmuth and I. Adesida, Thin Solid Films 479, 223 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the China Triumph International Engineering Co. Ltd. (CTIEC), Shanghai, China, which offers generous financial support for this work. The authors thank the Evans Analytical Group's Materials Characterization Division for the FIB-STEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehai Tan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Cao, X., Pan, J. et al. X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures. J. Electron. Mater. 46, 1405–1412 (2017). https://doi.org/10.1007/s11664-016-5136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5136-7

Keywords

Navigation