Skip to main content

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 3111 Accesses

Abstract

This study is a collection of both newly published and/or presented works on impurity capacity predictions in molten melts which were carried out by Derin et al. Some sulfide capacity prediction results of iron oxide containing ternary silicate melts and industrial lead and copper slags using the Reddy-Blander model and some impurity capacity predictions of multicomponent oxide and salt melts obtained using a Artificial Neural Network Approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. D.J. Sosinsky, I.D. Sommerville, The composition and temperature dependence of the sulfide capacity of metallurgical slags. Metall. Mater. Trans. B 17, 331–337 (1986)

    Article  Google Scholar 

  2. J.A. Duffy, M.D. Ingram, An interpretation of glass chemistry in terms of the optical basicity concept. J. Non-Cryst. Solids 21(3), 373–410 (1976)

    Article  Google Scholar 

  3. T. Mori, On the phosphorus distribution between slag and metal. Bull. J. Inst. Met. 23(5), 354–361 (1984)

    Article  Google Scholar 

  4. R. Moretti, G. Ottonello, Solubility and speciation of sulfur in silicate melts: the conjugated Toop-Samis-Flood-Grjotheim (CTSFG) model. Geochim. Cosmochim. Acta 69(4), 801–823 (2005)

    Article  Google Scholar 

  5. M.M. Nzotta, D. Sichen, S. Seetharaman, A study of the sulfide capacities of iron-oxide containing slags. Metall. Mater. Trans. B 30(5), 909–920 (1999)

    Article  Google Scholar 

  6. R. Selin, Y. Dong, Q. Wu, Uses of lime-based fluxes for simultaneous removal of phosphorus and sulphur in hot metal pretreatment. Scand. J. Metall. 19(3), 98–109 (1990)

    Google Scholar 

  7. Y. Kobayashi, N. Yoshida, K. Nagai, Thermodynamics of phosphorus in the MnO–SiO2–FetO system. ISIJ Int. 44(1), 21–26 (2004)

    Article  Google Scholar 

  8. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, J. Zhang, A Thermodynamic model of phosphate capacity for CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 slags equilibrated with molten steel during a top–bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall. Mater. Trans. B 42(5), 951–977 (2011)

    Article  Google Scholar 

  9. B. Maramba, R.H. Eric, Phosphide capacities of ferromanganese smelting slags. Min. Eng. 21, 132–137 (2008)

    Article  Google Scholar 

  10. M. Sasabe, S. Yamashita, S. Shiomi, T. Tamura, H. Hosokawa, K. Sano, Nitride capacity of the molten CaO–SiO2–Al2O3 system containing TiO2 or ZrO2 and equilibrated with Molten Si. Tetsu-to-Hagane 87(12), 727–733 (2001)

    Article  Google Scholar 

  11. W.Y. Shin, H.G. Lee, Nitride capacities of CaO–Al2O3–CaF2 melts at 1773 K. ISIJ Int. 41(3), 239–246 (2001)

    Article  Google Scholar 

  12. B. Derin, M. Suzuki, T. Tanaka, Sulphide capacity prediction of Molten slags by using a neural network approach. ISIJ Int. 50(8), 1059–1063 (2010)

    Article  Google Scholar 

  13. B. Derin, E. Alan, M. Suzuki, T. Tanaka, Phosphate, phosphide, nitride and carbide capacity predictions of Molten melts by using an artificial neural network approach. ISIJ Int. 56(2), 183–188 (2016)

    Article  Google Scholar 

  14. R.G. Reddy, M. Blander, Modeling of sulfide capacities of silicate melts. Metall. Trans. B 18, 591–596 (1987)

    Article  Google Scholar 

  15. R.G. Reddy, M. Blander, Sulfide capacities of MnO–SiO2 slags. Metall. Trans. B 20, 137–140 (1989)

    Article  Google Scholar 

  16. R.G. Reddy, Thermodynamic modeling of sulfide capacities of melts. Paper presented at 6th international conference on Molten slags, fluxes and salts, Stockholm, Sweden–Helsinki, Finland, 12–17 June, 2000

    Google Scholar 

  17. A.D. Pelton, G. Eriksson, A. Remero-Serrano, Calculation of sulfide capacities of multicomponent slags. Metall. Trans. B 24(5), 817–825 (1993)

    Article  Google Scholar 

  18. Y.B. Kang, A.D. Pelton, Thermodynamic model and database for sulfides dissolved in molten oxide slags. Metall. Meter. Trans. B 40, 979–994 (2009)

    Google Scholar 

  19. C.J.B. Fincham, F.D. Richardson, The behaviour of sulphur in silicate and aluminate melts. Proc. R. Soc. Lond. A 223, 40–62 (1954)

    Article  Google Scholar 

  20. B. Derin, O. Yücel, R.G. Reddy, Sulfide capacity modeling of FeOx–MO–SiO2 (MO = CaO, MnOx, MgO) melts. Miner. & Metall. Process. J. 28(1), 33–36 (2011)

    Google Scholar 

  21. B. Derin, O. Yucel, R.G. Reddy, Predicting of sulfide capacities of industrial lead smelting slags. Paper presented at TMS, Sohn International Symposium on Advanced Processing of Metals and Materials: Volume 1-Thermo And Physicochemical Principles: Non-Ferrous High-Temperature Processing, Catamaran Resort. San Diego, California, USA, pp. 237–244, 27–31 Aug 2006

    Google Scholar 

  22. B. Derin, R.G. Reddy. Sulfur and Oxygen partial pressure ratios prediction in copper flash smelting plants using reddy-blander model. Paper presented at Yazawa International Symposium on Metallurgical and Materials Processing, TMS, San Diego, California, USA, pp. 625-632, 02–06 Mar 2003

    Google Scholar 

Download references

Acknowledgments

We acknowledge with great pleasure the financial support from Istanbul Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bora Derin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Derin, B. (2017). A Review of Some Studies on Impurity Capacity Predictions in Molten Melts. In: Wang, S., Free, M., Alam, S., Zhang, M., Taylor, P. (eds) Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51091-0_50

Download citation

Publish with us

Policies and ethics