Skip to main content

Numerical Study of the Fluid Flow and Temperature Distribution in a Non-transferred DC ARC Thermal Plasma Reactor

  • Conference paper
  • First Online:
Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 3162 Accesses

Abstract

Numerical modeling of the thermal plasma process was carried out based on the thermal plasma reactor in our lab and confirmed using experimental data. The inlet boundary conditions of a non-transferred DC arc thermal plasma reactor were used in modeling the temperature and fluid flow distribution in the reactor. Different mesh grid sizes were used to confirm the model is independent of grid size. Temperature profile and gas flow distribution in the thermal plasma reactor were developed by the computational fluid dynamics (CFD) with ANSYS Fluent. The predicted temperatures are in good agreement with the experimentally measured temperatures in the reactor. The influence of plasma torch input power as well as the plasma gas flux on the temperature distribution was investigated using this model. The influence of power input and gas flow rate on temperature and velocity distributions are not independent. Generally, higher power input and lower gas flow rate will give rise to the temperature increase in the reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. M.I. Boulos, Thermal plasma processing. IEEE Trans. Plasma Sci. 19(6), 1078–1089 (1991)

    Article  Google Scholar 

  2. H.-C. Lee, S. Dhage, M.S. Akhtar, D.H. Kwak, W.J. Lee, C.-Y. Kim, O.-B. Yang, A simulation study on the direct carbothermal reduction of SiO2 for Si metal. Curr. Appl. Phys. 10(2), S218–S221 (2010)

    Article  Google Scholar 

  3. N. Thakkar, R.G. Reddy, Thermal plasma production of B4C nanopowders. J. Manuf. Sci. Prod. 7(2), 87–100 (2006)

    Google Scholar 

  4. L. Tong, R.G. Reddy, Synthesis of titanium carbide nano-powders by thermal plasma. Scr. Mater. 52(12), 1253–1258 (2005)

    Article  Google Scholar 

  5. S. Niyomwas, B. Wu, R.G. Reddy, Synthesis of Fe-TiN Composites by Thermal Plasma Processing. Ultrafine Grained Materials (as held at the 2000 TMS Annual Meeting, 2000), pp. 89–98

    Google Scholar 

  6. L. Tong, R.G. Reddy, Thermal plasma synthesis of SiC nano-powders/nano-fibers. Mater. Res. Bull. 41(12), 2303–2310 (2006)

    Article  Google Scholar 

  7. S.Y. Mashayak, CFD Modeling of Plasma Thermal Reactor for Waste Treatment (Purdue University West Lafayette, 2009)

    Google Scholar 

  8. H. Lorcet, D. Guenadou, C. Latge, M. Brothier, G. Mariaux, A. Vardelle, kinetics modeling of biomass gasification under thermal plasma conditions. Application to a refractory species: the methane. International symposium on plasma chemistry, Germany (Bochum, 2009)

    Google Scholar 

  9. I.B. Matveev, S. Serbin, Modeling of the coal gasification processes in a hybrid plasma torch. IEEE Trans. Plasma Sci. 35(6), 1639–1647 (2007)

    Article  Google Scholar 

  10. F. Qunbo, W. Lu, W. Fuchi, Modeling influence of basic operation parameters on plasma jet. J. Mater. Process. Technol 198(1), 207–212

    Google Scholar 

  11. Y.A. Mankelevich, M. Ashfold, A. Orr-Ewing, Measurement and modeling of Ar∕H2∕CH4 arc jet discharge chemical vapor deposition reactors II: Modeling of the spatial dependence of expanded plasma parameters and species number densities. J. Appl. Phys. 102(6), 063310 (2007)

    Article  Google Scholar 

  12. R. Williamson, J. Fincke, D. Crawford, S. Snyder, W. Swank, D. Haggard, Entrainment in high-velocity, high-temperature plasma jets.: Part II: computational results and comparison to experiment. Int. J. Heat Mass Transf. 46(22), 4215–4228 (2003)

    Article  Google Scholar 

  13. N. Agon, J. Vierendeels, M. Hrabovský, A. Murphy, G. Van Oost, Interaction of a H2O/AR plasma jet with nitrogen atmosphere: effect of the method for calculating thermophysical properties of the gas mixture on the flow field. Plasma Chem. Plasma Process. 35(2), 365–386 (2015)

    Article  Google Scholar 

  14. L. Yan, L. Yudong, Z. Ting’an, F. Naixiang, Research on the penetration depth in aluminum reduction cell with new type of anode and cathode structures. JOM 66(7), 1202–1209 (2014)

    Article  Google Scholar 

  15. Y. Li, R. Reddy, Experimental and numerical investigation of thermal plasma synthesis of silicon. J. Manuf. Sci. Prod. 15(4), 345–354 (2015)

    Google Scholar 

  16. J. Ramshaw, C. Chang, Computational fluid dynamics modeling of multicomponent thermal plasmas. Plasma Chem. Plasma Process. 12(3), 299–325 (1992)

    Article  Google Scholar 

  17. C. Chang, J. Ramshaw, Numerical simulations of argon plasma jets flowing into cold air. Plasma Chem. Plasma Process. 13(2), 189–209 (1993)

    Article  Google Scholar 

  18. J. Fincke, C. Chang, W. Swank, D. Haggard, Entrainment and demixing in subsonic thermal plasma jets: comparison of measurements and predictions. Int. J. Heat Mass Transf. 37(11), 1673–1682 (1994)

    Article  Google Scholar 

  19. A. Fluent, Release 14.0, User Guide, Ansys, Inc., Lebanon, US (2011)

    Google Scholar 

  20. H. Lorcet, M. Brothier, D. Guenadou, C. Latge, A. Vardelle, Modeling bio-oil gasification by a plasma process. High Temp. Mater. Proc.: An Int. Q. High-Technol. Plasma Process. 14(1–2) (2010)

    Google Scholar 

  21. M. Hrabovsky, V. Kopecký, V. Sember, T. Kavka, O. Chumak, M. Konrad, Properties of hybrid water/gas DC arc plasma torch. IEEE Trans. Plasma Sci. 34(4), 1566–1575 (2006)

    Article  Google Scholar 

  22. J. Fincke, D. Crawford, S. Snyder, W. Swank, D. Haggard, R. Williamson, Entrainment in high-velocity, high-temperature plasma jets. Part I: experimental results. Int. J. Heat Mass Transf. 46(22), 4201–4213 (2003)

    Article  Google Scholar 

  23. M. Ramachandran, R.G. Reddy, Thermal plasma synthesis of SiC. Advances in Manufacturing 1(1), 50–61 (2013)

    Article  Google Scholar 

  24. R.G. Reddy, L.V. Antony, Processing of SiC nano powders using thermal plasma technique. In Proceedings of the International Conference on Nanotechnology: Scientific Challenges and Commercial Opportunities, (Rhode Island, pp. 17–18, 2003)

    Google Scholar 

  25. L. Tong, R.G. Reddy, In situ synthesis of TiC-Al (Ti) nanocomposite powders by thermal plasma technology. Metall. Mater. Trans. B 37(4), 531–539 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support from National Science Foundation (NSF) agency (Grant No. DMR-1310072), American Cast Iron Pipe Company (ACIPCO) and The University of Alabama during the course of the current research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Li, Y., Reddy, R. (2017). Numerical Study of the Fluid Flow and Temperature Distribution in a Non-transferred DC ARC Thermal Plasma Reactor. In: Wang, S., Free, M., Alam, S., Zhang, M., Taylor, P. (eds) Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51091-0_43

Download citation

Publish with us

Policies and ethics