Skip to main content
Log in

Three-Dimensional Non-equilibrium Modeling on the Characteristics of the Dual-Jet Direct-Current Arc Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, the three-dimensional (3-D) two-temperature modeling on the characteristics of the dual-jet DC arc argon plasmas under different plasma working gas flow rates ranging from 0 to 15 slpm or the chamber pressures increasing from 0.4 to 1.0 atm are conducted at a fixed arc current of 80 A. The modeling results reveal a significant 3-D feature of the temperature and flow fields of the plasma arc-jet due to the declination of the electrodes to each other geometrically, and an obvious deviation from the local thermodynamic equilibrium (LTE) state resulting from the interactions between the high temperature plasma and the cold walls or cold surrounding gas. With other parameters being unchanged, the spatial distributions of the LTE plasma region changed significantly with increasing the plasma working gas flow rate; and the decrease of the chamber pressure leads to the expansion of the high-temperature region and the shrink of the LTE plasma region, which shows a more significant non-LTE feature of the plasma arc-jet. The calculated heavy-particle temperature distributions and the arc voltages are qualitatively consistent with the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hsu KC, Etemadi K, Pfender E (1983) J Appl Phys 54:1293–1301

    Article  CAS  Google Scholar 

  2. Murphy A (1997) Phys Rev E 55:7473–7494

    Article  CAS  Google Scholar 

  3. Chen X, Li H-P (2001) Int J Heat Mass Transf 44:2541–2553

    Article  Google Scholar 

  4. Bachmann B, Kozakov R, Gött G, Ekkert K, Bachmann J, Marques J, Schöpp H, Uhrlandt D, Schein J (2013) J Phys D Appl Phys 46:125203

    Article  Google Scholar 

  5. Gleizes A, Gonzalez JJ, Freton P (2005) J Phys D Appl Phys 38:R153–R183

    Article  CAS  Google Scholar 

  6. Hsu KC, Pfender E (1983) J Appl Phys 54:4359–4366

    Article  CAS  Google Scholar 

  7. Fauchais P (2004) J Phys D Appl Phys 37:R86–R108

    Article  CAS  Google Scholar 

  8. Trelles J, Chazelas C, Vardelle A, Heberlein J (2009) J Therm Spray Technol 18:728–752

    Article  Google Scholar 

  9. Murphy A (2011) J Phys D Appl Phys 44:194009

    Article  Google Scholar 

  10. Lowke JJ (2013) Plasma Sources Sci Technol 22:023002

    Article  Google Scholar 

  11. Polyakov SP, Rozenberg MG (1977) J Eng Phys Thermophys 32:675–682

    Article  Google Scholar 

  12. Polyakov SP, Pechenkin VI (1982) J Eng Phys Thermophys 43:1293–1296

    Article  Google Scholar 

  13. Zhang H, Wu G-Q, Li H-P, Bao C-Y (2009) IEEE Trans Plasma Sci 37:1129–1135

    Article  Google Scholar 

  14. Wang Z, Wu G-Q, Ge N, Li H-P, Bao C-Y (2010) IEEE Trans Plasma Sci 38:2906–2913

    Article  Google Scholar 

  15. Inaba T, Kikuchi M, Li H-P, Iwao T (2006) Proceedings of the XVI international conference on gas discharges and their applications. Xi’an, China

  16. Megy S, Bousrih S, Baronnet J-M, Ershov-Pavlov E, Williams J, Iddles D (1995) Plasma Chem Plasma Process 15:309–331

    Article  CAS  Google Scholar 

  17. Tang K-M, Yan J-D, Chapman C, Fang M (2010) J Phys D Appl Phys 43:345201

    Article  Google Scholar 

  18. Colombo V, Conceal A, Ghedini E (2008) IEEE Trans Plasma Sci 36:1038–1039

    Article  Google Scholar 

  19. Colombo V, Ghedini E, Boselli M, Sanibondi P, Concetti A (2011) J Phys D Appl Phys 44:194005

    Article  Google Scholar 

  20. Li H-P, Benilov MS (2007) J Phys D Appl Phys 40:2010–2017

    Article  CAS  Google Scholar 

  21. Zhou X, Heberlein J (1994) Plasma Sources Sci Technol 3:564–574

    Article  CAS  Google Scholar 

  22. Li H-P, Pfender E, Chen X (2003) J Phys D Appl Phys 36:1084–1096

    Article  CAS  Google Scholar 

  23. Gonzalez JJ, Freton P, Gleizes A (2002) J Phys D Appl Phys 35:3181–3191

    Article  CAS  Google Scholar 

  24. Trelles JP, Heberlein J, Pfender E (2007) J Phys D Appl Phys 40:5937–5952

    Article  CAS  Google Scholar 

  25. Mitchner M, Kruger CH (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

  26. Devoto RS (1973) Phys Fluids 16:616–623

    Article  CAS  Google Scholar 

  27. Freton P, Gonzalez JJ, Masquere M, Reichert F (2011) J Phys D Appl Phys 44:345202

    Article  Google Scholar 

  28. Chen X, Li H-P (2002) Int J Heat Mass Transf 46:1443–1454

    Article  Google Scholar 

  29. Lide DR (2003) The CRC handbook of chemistry and physics. CRC Press, New York

    Google Scholar 

  30. Chen X (2009) Heat transfer and fluid flow under thermal plasma conditions, Chap. 8. Science Press, Beijing (in Chinese)

  31. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Washington

    Google Scholar 

  32. Griem HR (1964) Plasma spectroscopy. McGraw-Hill Book Company, New York

    Google Scholar 

  33. Benilov MS, Benilova LG, Li H-P, Wu G-Q (2012) J Phys D Appl Phys 45:355201

    Article  Google Scholar 

  34. Shkol’nik SM (2011) Plasma Sources Sci Technol 20:013001

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (11035005, 61104204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Ping Li.

Additional information

Heng Guo and Gui-Qing Wu have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Wu, GQ., Li, HP. et al. Three-Dimensional Non-equilibrium Modeling on the Characteristics of the Dual-Jet Direct-Current Arc Plasmas. Plasma Chem Plasma Process 35, 75–89 (2015). https://doi.org/10.1007/s11090-014-9586-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9586-5

Keywords

Navigation