Skip to main content

Pathogenesis of Tuberculosis of the Nervous System

  • Chapter
  • First Online:
Tuberculosis of the Central Nervous System

Abstract

The understanding of the pathogenesis of tuberculosis (TB) of the central nervous system (CNS) started early in 1933, when Rich and McCordock published their experimental observations about tuberculous meningitis (TBM). It is believed that extrapulmonary TB infection including CNS starts with respiratory infection followed by hematogenous dissemination to other sites. Tuberculous lesions will develop in the meninges and may remain dormant for years. Ruptures of the foci and mycobacteria release into subarachnoid space or the ventricular system can cause TBM. Despite the fact that it has been long since the discovery of Mycobacterium tuberculosis, remarkably little is known about the pathogenesis of TB of the nervous system. Future studies on M. tuberculosis and their interactions with the host immune system and the blood-brain barrier will lead to a better understanding of this disease, with the aim to overcome the considerable challenges in diagnosing, treating, and managing it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood-brain barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

TB:

Tuberculosis

TBM:

Tuberculous meningitis

TNF:

Tumor necrosis factor

References

  1. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    Article  CAS  PubMed  Google Scholar 

  2. Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R (2011) Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011:405310

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tapping RI, Tobias PS (2003) Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J Endotoxin Res 9:264–268

    Article  CAS  PubMed  Google Scholar 

  4. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ (1999) Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 163:3920–3927

    CAS  PubMed  Google Scholar 

  5. Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, Spallek R, Singh M, Arditi M (2005) Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem 280:20961–20967

    Article  CAS  PubMed  Google Scholar 

  6. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A (2005) TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202:1715–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Means TK, Jones BW, Schromm AB, Shurtleff BA, Smith JA, Keane J, Golenbock DT, Vogel SN, Fenton MJ (2001) Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J Immunol 166:4074–4082

    Article  CAS  PubMed  Google Scholar 

  8. Davila S, Hibberd ML, HariDass R, Wong HE, Sahiratmadja E, Bonnard C, Alisjahbana B, Szeszko JS, Balabanova Y, Drobniewski F, van Crevel R, van de Vosse E, Nejentsev S, Ottenhoff TH, Seielstad M (2008) Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet 4:e1000218

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rivas-Santiago B, Sada E, Tsutsumi V, Aguilar-Leon D, Contreras JL, Hernandez-Pando R (2006) beta-Defensin gene expression during the course of experimental tuberculosis infection. J Infect Dis 194:697–701

    Article  CAS  PubMed  Google Scholar 

  10. Isabel BE, Rogelio HP (2014) Pathogenesis and immune response in tuberculous meningitis. Malays J Med Sci 21:4–10

    PubMed  PubMed Central  Google Scholar 

  11. Divangahi M, Behar SM, Remold H (2013) Dying to live: how the death modality of the infected macrophage affects immunity to tuberculosis. Adv Exp Med Biol 783:103–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Behar SM, Divangahi M, Remold HG (2010) Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8:668–674

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rios-Barrera VA, Campos-Pena V, Aguilar-Leon D, Lascurain LR, Meraz-Rios MA, Moreno J, Figueroa-Granados V, Hernández-Pando R (2006) Macrophage and T lymphocyte apoptosis during experimental pulmonary tuberculosis: their relationship to mycobacterial virulence. Eur J Immunol 36:345–353

    Article  PubMed  Google Scholar 

  14. Oddo M, Renno T, Attinger A, Bakker T, MacDonald HR, Meylan PR (1998) Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol 160:5448–5454

    CAS  PubMed  Google Scholar 

  15. Kremer L, Estaquier J, Brandt E, Ameisen JC, Locht C (1997) Mycobacterium bovis Bacillus Calmette Guerin infection prevents apoptosis of resting human monocytes. Eur J Immunol 27:2450–2456

    Article  CAS  PubMed  Google Scholar 

  16. Keane J, Remold HG, Kornfeld H (2000) Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 164:2016–2020

    Article  CAS  PubMed  Google Scholar 

  17. Spira A, Carroll JD, Liu G, Aziz Z, Shah V, Kornfeld H, Keane J (2003) Apoptosis genes in human alveolar macrophages infected with virulent or attenuated Mycobacterium tuberculosis: a pivotal role for tumor necrosis factor. Am J Respir Cell Mol Biol 29:545–551

    Article  CAS  PubMed  Google Scholar 

  18. Rojas M, Barrera LF, Puzo G, Garcia LF (1997) Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages: role of nitric oxide and mycobacterial products. J Immunol 159:1352–1361

    CAS  PubMed  Google Scholar 

  19. Klingler K, Tchou-Wong KM, Brandli O, Aston C, Kim R, Chi C, Rom WN (1997) Effects of mycobacteria on regulation of apoptosis in mononuclear phagocytes. Infect Immun 65:5272–5278

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Parandhaman DK, Narayanan S (2014) Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 4:31

    Article  PubMed  PubMed Central  Google Scholar 

  21. Salgame P (2005) Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr Opin Immunol 17:374–380

    Article  CAS  PubMed  Google Scholar 

  22. Hernandez-Pando R, Orozco H, Aguilar D (2009) Factors that deregulate the protective immune response in tuberculosis. Arch Immunol Ther Exp (Warsz) 57:355–367

    Article  CAS  Google Scholar 

  23. Sahiratmadja E, Alisjahbana B, de Boer T, Adnan I, Maya A, Danusantoso H, Nelwan RH, Marzuki S, van der Meer JW, van Crevel R, van de Vosse E, Ottenhoff TH (2007) Dynamic changes in pro- and anti-inflammatory cytokine profiles and gamma interferon receptor signaling integrity correlate with tuberculosis disease activity and response to curative treatment. Infect Immun 75:820–829

    Article  CAS  PubMed  Google Scholar 

  24. Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581

    Article  CAS  PubMed  Google Scholar 

  25. Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18

    Article  CAS  PubMed  Google Scholar 

  26. Be NA, Kim KS, Bishai WR, Jain SK (2009) Pathogenesis of central nervous system tuberculosis. Curr Mol Med 9:94–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagesh Babu G, Kumar A, Kalita J, Misra UK (2008) Proinflammatory cytokine levels in the serum and cerebrospinal fluid of tuberculous meningitis patients. Neurosci Lett 436:48–51

    Article  CAS  PubMed  Google Scholar 

  28. Misra UK, Kalita J, Srivastava R, Nair PP, Mishra MK, Basu A (2010) A study of cytokines in tuberculous meningitis: clinical and MRI correlation. Neurosci Lett 483:6–10

    Article  CAS  PubMed  Google Scholar 

  29. Mansour AM, Frenck RW Jr, Darville T, Nakhla IA, Wierzba TF, Sultan Y, Bassiouny MI, McCarthy K, Jacobs RF (2005) Relationship between intracranial granulomas and cerebrospinal fluid levels of gamma interferon and interleukin-10 in patients with tuberculous meningitis. Clin Diagn Lab Immunol 12:363–365

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW, Ray JP, Ko DC, Zou Y, Bang ND, Chau TT, Vary JC, Hawn TR, Dunstan SJ, Farrar JJ, Thwaites GE, King MC, Serhan CN, Ramakrishnan L (2012) Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148:434–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vanden Driessche K, Persson A, Marais BJ, Fink PJ, Urdahl KB (2013) Immune vulnerability of infants to tuberculosis. Clin Dev Immunol 2013:781320

    Article  PubMed  PubMed Central  Google Scholar 

  32. Akalin H, Akdis AC, Mistik R, Helvaci S, Kilicturgay K (1994) Cerebrospinal fluid interleukin-1 beta/interleukin-1 receptor antagonist balance and tumor necrosis factor-alpha concentrations in tuberculous, viral and acute bacterial meningitis. Scand J Infect Dis 26:667–674

    Article  CAS  PubMed  Google Scholar 

  33. Mastroianni CM, Lancella L, Mengoni F, Lichtner M, Santopadre P, D'Agostino C, Ticca F, Vullo V (1998) Chemokine profiles in the cerebrospinal fluid (CSF) during the course of pyogenic and tuberculous meningitis. Clin Exp Immunol 114:210–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jain SK, Paul-Satyaseela M, Lamichhane G, Kim KS, Bishai WR (2006) Mycobacterium tuberculosis invasion and traversal across an in vitro human blood-brain barrier as a pathogenic mechanism for central nervous system tuberculosis. J Infect Dis 193:1287–1295

    Article  CAS  PubMed  Google Scholar 

  35. Rock RB, Olin M, Baker CA, Molitor TW, Peterson PK (2008) Central nervous system tuberculosis: pathogenesis and clinical aspects. Clin Microbiol Rev 21:243–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu HS, Kolonoski P, Chang YY, Bermudez LE (2000) Invasion of the brain and chronic central nervous system infection after systemic Mycobacterium avium complex infection in mice. Infect Immun 68:2979–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rich AR, McCordock HA (1933) Pathogenesis of tubercular meningitis. Bull John Hopkins Hosp 52:5–13

    Google Scholar 

  38. Ray H, Riggs HE, Rupp C (1956) Clinicopathologic study of tuberculous meningitis in adults. Am Rev Tuberc 74:830–834

    CAS  PubMed  Google Scholar 

  39. Dastur DK, Manghani DK, Udani PM (1995) Pathology and pathogenetic mechanisms in neurotuberculosis. Radiol Clin North Am 33:733–752

    CAS  PubMed  Google Scholar 

  40. al-Deeb SM, Yaqub BA, Sharif HS, Motaery KR (1992) Neurotuberculosis: a review. Clin Neurol Neurosurg 94(Suppl):S30–S33

    Article  PubMed  Google Scholar 

  41. Katti MK (2004) Pathogenesis, diagnosis, treatment, and outcome aspects of cerebral tuberculosis. Med Sci Monit 10:RA215–RA229

    PubMed  Google Scholar 

  42. Hernandez Pando R, Aguilar D, Cohen I, Guerrero M, Ribon W, Acosta P, Orozco H, Marquina B, Salinas C, Rembao D, Espitia C (2010) Specific bacterial genotypes of Mycobacterium tuberculosis cause extensive dissemination and brain infection in an experimental model. Tuberculosis (Edinb) 90:268–277

    Article  CAS  Google Scholar 

  43. Tandon PN, Rao MAP, Banerji AK, Pathak SN, Dhar J (1975) Isotope scanning of the cerebrospinal fluid pathways in tuberculous meningitis. J Neurol Sci 25:401

    Article  Google Scholar 

  44. Garg RK (1999) Tuberculosis of the central nervous system. Postgrad Med J 75:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Talamas O, Del Brutto OH, Garcia-Ramos G (1989) Brain-stem tuberculoma. An analysis of 11 patients. Arch Neurol 46:529–535

    Article  CAS  PubMed  Google Scholar 

  46. Rajshekhar V, Chandy MJ (1997) Tuberculomas presenting as isolated intrinsic brain stem masses. Br J Neurosurg 11:127–133

    Article  CAS  PubMed  Google Scholar 

  47. Vengsarkar US, Pisipaty RP, Parekh B, Panchal VG, Shetty MN (1986) Intracranial tuberculoma and the CT scan. J Neurosurg 64:568–574

    Article  CAS  PubMed  Google Scholar 

  48. Zein TM, Fletcher PS, Mirghani ZM (2000) Intracranial tuberculoma. Saudi Med J 21:196–199

    CAS  PubMed  Google Scholar 

  49. Mohindra S, Savardekar A, Gupta R, Tripathi M, Rane S (2016) Tuberculous brain abscesses in immunocompetent patients: a decade long experience with nine patients. Neurol India 64:66–74

    Article  PubMed  Google Scholar 

  50. Menon S, Bharadwaj R, Chowdhary A, Kaundinya D, Palande D (2011) Tuberculous brain abscesses: case series and review of literature. J Neurosci Rural Pract 2:153–157

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dastur DK, Udani PM (1966) The pathology and pathogenesis of tuberculous encephalopathy. Acta Neuropathol 6:311–326

    Article  CAS  PubMed  Google Scholar 

  52. Udani PM, Dastur DK (1970) Tuberculous encephalopathy with and without meningitis. Clinical features and pathological correlations. J Neurol Sci 10:541–561

    Article  CAS  PubMed  Google Scholar 

  53. Garg RK, Somvanshi DS (2011) Spinal tuberculosis: a review. J Spinal Cord Med 34:440–454

    Article  PubMed  PubMed Central  Google Scholar 

  54. Davidson PT, Le HQ (1999) Tuberculosis and nontuberculous mycobacterial infections. In: Schlossberg D (ed) Musculoskeletal tuberculosis, 4th edn. W B Saunders, Saint Louis, pp 204–220

    Google Scholar 

  55. Jain AK, Dhammi IK (2007) Tuberculosis of the spine: a review. Clin Orthop Relat Res 460:39–49

    Article  PubMed  Google Scholar 

  56. McLain RF, Isada C (2004) Spinal tuberculosis deserves a place on the radar screen. Cleve Clin J Med 71:537–539

    Article  PubMed  Google Scholar 

  57. Quinones-Hinojosa A, Jun P, Jacobs R, Rosenberg WS, Weinstein PR (2004) General principles in the medical and surgical management of spinal infections: a multidisciplinary approach. Neurosurg Focus 17:E1

    PubMed  Google Scholar 

  58. Lee KY (2014) Comparison of pyogenic spondylitis and tuberculous spondylitis. Asian Spine J 8:216–223

    Article  PubMed  PubMed Central  Google Scholar 

  59. Moon MS (1997) Tuberculosis of the spine. Controversies and a new challenge. Spine (Phila Pa 1976) 22:1791–1797

    Article  CAS  Google Scholar 

  60. Hodgson AR, Yau A (1967) Pott's paraplegia: a classification based upon the living pathology. Paraplegia 5:1–16

    Article  CAS  PubMed  Google Scholar 

  61. Pott disease: background, pathophysiology, epidemiology. http://emedicine.medscape.com/article/226141-overview. Accessed 17 Mar 2016

  62. Dastur HM (1983) Diagnosis and neurosurgical treatment of tuberculous disease of the CNS. Neurosurg Rev 6:111–117

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Bosaeed MD, MB, SB-Med .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bosaeed, M.A., Alothman, A. (2017). Pathogenesis of Tuberculosis of the Nervous System. In: Turgut, M., Akhaddar, A., Turgut, A., Garg, R. (eds) Tuberculosis of the Central Nervous System. Springer, Cham. https://doi.org/10.1007/978-3-319-50712-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50712-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50711-8

  • Online ISBN: 978-3-319-50712-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics