Skip to main content

Advertisement

Log in

Factors that deregulate the protective immune response in tuberculosis

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Tuberculosis (TB) is a chronic infectious disease which essentially affects the lungs and produces profound abnormalities on the immune system. Although most people infected by the tubercle bacillus (90%) do not develop the disease during their lifetime, when there are alterations in the immune system, such as co-infection with HIV, malnutrition, or diabetes, the risk of developing active disease increases considerably. Interestingly, during the course of active disease, even in the absence of immunosuppressive conditions, there is a profound and prolonged suppression of Mycobacterium tuberculosis-specific protective immune responses. Several immune factors can contribute to downregulate the protective immunity, permitting disease progression. In general, many of these factors are potent anti-inflammatory molecules that are probably overproduced with the intention to protect against tissue damage, but the consequence of this response is a decline in protective immunity facilitating bacilli growth and disease progression. Here the most significant participants in protective immunity are reviewed, in particular the factors that deregulate protective immunity in TB. Their manipulation as novel forms of immunotherapy are also briefly commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcais A, Fieschi C, Abel L et al (2005) Tuberculosis in children and adults: two distinct genetic diseases. J Exp Med 202: 1617–1621

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JA, Hart PD (1975) Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacillus. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 142: 1–16

    CAS  Google Scholar 

  • Ashitani J, Mukae H, Hiratsuka T et al (2001) Plasma and BAL fluid concentrations of antimicrobial peptides in patients with Mycobacterium avium-intracellulare infection. Chest 119: 1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Atamas SP, Yurovsky VV, Wise R et al (1999) Production of Type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheum 42: 1168–1179

    Article  PubMed  CAS  Google Scholar 

  • Aung H, Wu M, Johnson JL et al (2005) Bioactivation of latent transforming growth factor beta1 by Mycobacterium tuberculosis in human mononuclear phagocytes. Scand J Immunol 61: 558–565

    Article  PubMed  CAS  Google Scholar 

  • Bals R (2000) Epithelial antimicrobial peptides in host defense against infection. Respir Res 1: 141–150

    Article  PubMed  CAS  Google Scholar 

  • Bals R, Wang X, Wu Z et al (1998) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 102: 874–880

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman R (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Barrat FJ, Cua DJ, Boonstra A et al (2002) In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1) and Th2-inducing cytokines. J Exp Med 195: 603–616

    Article  PubMed  CAS  Google Scholar 

  • Baumann H, Gauldie J (1990) Regulation of hepatic acute phase plasma protein genes by hepatocyte stimulating factors and other mediators of inflammation. Mol Biol Med 7: 147–159

    PubMed  CAS  Google Scholar 

  • Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15: 74–80

    Article  PubMed  CAS  Google Scholar 

  • Behar SM, Dascher CC, Grusby MJ (1999) Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189: 1973–1980

    Article  PubMed  CAS  Google Scholar 

  • Bermudez LE, Goodman J (1996) Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun 64: 1400–1406

    PubMed  CAS  Google Scholar 

  • Bertini R, Bianchi M, Ghezzi P (1988) Adrenalectomy sensitizes mice to the lethal effects of interleukin 1 and tumor necrosis factor. J Exp Med 167: 1708–1712

    Article  PubMed  CAS  Google Scholar 

  • Biedermann T, Zimmermann S, Himmelrich H et al (2001) IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat Immunol 2: 1054–1060

    Article  PubMed  CAS  Google Scholar 

  • Boyton RJ, Openshaw PJ (2002) Pulmonary defences to acute respiratory infection. Br Med Bull 61: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Bretscher P, Wei G, Menon JN et al (1992) Establishment of stable cell-mediated immunity that makes “susceptible” mice resistant to Leishmania major. Science 257: 539–542

    Article  PubMed  CAS  Google Scholar 

  • Brown DH, LaFuse W, Zwilling BS (1995) Cytokine-mediated activation of macrophages from Mycobacterium bovis BCG-resistant and -susceptible mice, differential effects of corticosterone on antimicobacterial activity and expression of the Bcg gene. Infect Immun 63: 2983–2988

    PubMed  CAS  Google Scholar 

  • Caruso AM, Serbina N, Klein E et al (1999) Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol 162: 5407–5416

    PubMed  CAS  Google Scholar 

  • Chan J, Fan XD, Hunter SW et al (1991) Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 59: 1755–1761

    PubMed  CAS  Google Scholar 

  • Chan J, Xing Y, Magliozzo RS et al (1992) Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated macrophages. J Exp Med 175: 1111–1122

    Article  PubMed  CAS  Google Scholar 

  • Clemens DL (1996) Characterization of the Mycobacterium tuberculosis phagosome. Trends Microbiol 4: 113–118

    Article  PubMed  CAS  Google Scholar 

  • Crowle AJ, Dahl R, Ross E et al (1991) Evidence that vescicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect Immun 59: 1823–1931

    PubMed  CAS  Google Scholar 

  • Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60: 1068–1074

    PubMed  CAS  Google Scholar 

  • Dahl KE, Shiratsuchi H, Hamilton BD et al (1996) Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun 64: 399–405

    PubMed  CAS  Google Scholar 

  • Dai G, McMurray DN (1999) Effects of modulating TGF-beta 1 on immune responses to mycobacterial infection in guinea pigs. Tuber Lung Dis 79: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Daynes RA, Meikle AW, Araneo BA (1991) Locally active steroids hormones may facilitate compartamentalization of immunity by regulating the type of lymphokines produced by helper T cells. Res Immunol 142: 40–45

    Article  PubMed  CAS  Google Scholar 

  • de Valliere S, Abate G, Blazevic A et al (2005) Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect Immun 73: 6711–6720

    Article  PubMed  CAS  Google Scholar 

  • Diamond G, Bevins CL (1998) beta-Defensins: endogenous antibiotics of the innate host defense response. Clin Immunol Immunopathol 88: 221–225

    Article  PubMed  CAS  Google Scholar 

  • Engering AJ, Cella M, Fluitsma D et al (1997) The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur J Immunol 27: 2417–2425

    Article  PubMed  CAS  Google Scholar 

  • Fanger NA, Wardwell K, Shen L et al (1996) Type I (CD64) and type II (CD32) Fc gamma receptor-mediated phagocytosis by human blood dendritic cells. J Immunol 157: 541–548

    PubMed  CAS  Google Scholar 

  • Fenhalls G, Wong A, Bezuidenhout J et al (2000) In situ production of gamma interferon, interleukin-4, and tumor necrosis factor alpha mRNA in human lung tuberculosis granulomas. Infect Immun 68: 2827–2836

    Article  PubMed  CAS  Google Scholar 

  • Ferrari G, Langen H, Naito M et al (1999) A coat protein on phagosomes involved in the intracelular survival of mycobacteria. Cell 97: 435–447

    Article  PubMed  CAS  Google Scholar 

  • Fiorenza G, Rateni L, Farroni MA et al (2005) TNF-alpha, TGF-beta and NO relationship in sera from tuberculosis (TB) patients of different severity. Immunol Lett 98: 45–48

    Article  PubMed  CAS  Google Scholar 

  • Fischer K, Collins H, Taniguchi M et al (2002) IL-4 and T cells are required for the generation of IgG1 isotype antibodies against cardiolipin. J Immunol 168: 2689–2694

    PubMed  CAS  Google Scholar 

  • Flynn JL, Goldstein MM, Triebold KJ et al (1992) Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 89: 12013–12017

    Article  PubMed  CAS  Google Scholar 

  • Flynn JL, Scanga CA, Tanaka KE et al (1998) Effects of aminoguanidine on latent murine tuberculosis. J Immunol 160: 1796–1803

    PubMed  CAS  Google Scholar 

  • Gabay JE, Scott RW, Campanelli D et al (1989) Antibiotic proteins of human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 86: 5610–5614

    Article  PubMed  CAS  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3: 710–720

    Article  PubMed  CAS  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D et al (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76: 1427–1435

    CAS  Google Scholar 

  • García-Romo GS, Pedroza-Gonzalez A, Aguilar-Leon D et al (2004) Airways infection with virulent Mycobacterium tuberculosis delays the influx of dendritic cells and the expression of costimulatory molecules in mediastinal lymph nodes. Immunology 112: 661–668

    Article  PubMed  CAS  Google Scholar 

  • Gatfield J, Pieters J (2000) Essential role of cholesterol in entry of mycobacteria into macrophages. Science 288: 1647–1650

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Van Vliet SJ, Koppel EA et al (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197: 7–17

    Article  PubMed  CAS  Google Scholar 

  • Gumperz JE, Brenner MB (2001) CD1-specific T cells in microbial immunity. Curr Opin Immunol 13: 471–478

    Article  PubMed  CAS  Google Scholar 

  • Hasan Z, Schlax C, Kuhn L et al (1997) Isolation and characterization of the mycobacterial phagosome: segregation from the endosomal/lysosomal pathway. Mol Microbiol 24: 545–553

    PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Aguilar D, Hernandez ML et al (2004) Pulmonary tuberculosis in BALB/c mice with non-functional IL-4 genes: changes in the inflammatory effects of TNF-alpha and in the regulation of fibrosis. Eur J Immunol 34: 174–183

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Aguilar-Leon D, Orozco H et al (2005) 16 alpha-Bromoepiandrosterone restores T helper cell Type 1 activity and accelerates chemotherapy-induced bacterial clearance in a model of progressive pulmonary tuberculosis. J Infect Dis 191: 299–306

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Arriaga AK, Panduro CA et al (1998a) The response of hepatic acute phase proteins during experimental pulmonary tuberculosis. Exp Mol Pathol 65: 25–36

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Jeyanathan M, Mengistu G et al (2000) Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356: 2133–2138

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Orozco EH, Sampieri A et al (1996) Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary pathology. Immunology 89: 26–33

    PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Orozco H, Arriaga K et al (1997a) Analysis of the local kinetics and localization of interleukin-1 alpha, tumor necrosis factor-alpha and transforming growth factor-beta, during the course of experimental pulmonary tuberculosis. Immunology 90: 607–617

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Orozco H, Honour J et al (1995) Adrenal changes in murine pulmonary tuberculosis a clue to pathogenesis. FEMS Immunol Med Microbiol 12: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Orozco-Esteves H, Maldonado HA et al (2006) A combination of a transforming growth factor-beta antagonist and an inhibitor of cyclooxygenase is an effective treatment for murine pulmonary tuberculosis. Clin Exp Immunol 144: 264–272

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Pavon L, Arriaga K et al (1997b) Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacteria saprophyte before infection. Infect Immun 65: 3317–3327

    PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Rook GA (1994) The role of TNF-alpha in T-cell-mediated inflammation depends on the Th1/Th2 cytokine balance. Immunology 82: 591–595

    PubMed  CAS  Google Scholar 

  • Hernandez-Pando R, Schön T, Orozco EH et al (2001) Expression of inducible nitric oxide synthase and nitrotyrosine during the evolution of experimental pulmonary tuberculosis. Exp Toxicol Pathol 53: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Pando, Streber ML, Orozco H et al (1998b) The effects of androstenediol and dehydroepiandosterone on the course and cytokine profile of tuberculosis in BALB/c mice. Immunology 95: 234–241

    Article  PubMed  CAS  Google Scholar 

  • Hoft DF, Kemp EB, Marinaro M et al (1999) A double-blind, placebo-controlled study of Mycobacterium-specific human immune responses induced by intradermal bacille Calmette-Guerin vaccination. J Lab Clin Med 134: 244–252

    Article  PubMed  CAS  Google Scholar 

  • Hoft DF, Worku S, Kampmann B et al (2002) Investigation of the relationships between immune-mediated inhibition of mycobacterial growth and other potential surrogate markers of protective Mycobacterium tuberculosis immunity. J Infect Dis 186: 1448–1457

    Article  PubMed  CAS  Google Scholar 

  • Hoover DM, Rajashankar KR, Blumenthal R et al (2000) The structure of human beta-defensin-2 shows evidence of higher order oligomerization. J Biol Chem 275: 32911–32918

    Article  PubMed  CAS  Google Scholar 

  • Jarrossay D, Napolitani G, Colonna M et al (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31: 3388–3393

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Swiggard WJ, Heufler C et al (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375: 151–155

    Article  PubMed  CAS  Google Scholar 

  • Jouanguy E, Doffinger R, Dupuis S et al (1999) IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol 11: 346–351

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki N, Ho S, Antonenko S et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194: 863–869

    Article  PubMed  CAS  Google Scholar 

  • Kaiser V, Diamond G (2000) Expression of mammalian defensin genes. J Leukoc Biol 68: 779–784

    PubMed  CAS  Google Scholar 

  • Kaplan G (1994) Cytokine regulation of disease progression in leprosy and tuberculosis. Immunobiology 191: 564–568

    PubMed  CAS  Google Scholar 

  • Kisich KO, Heifets L, Higgins M et al (2001) Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of Mycobacterium tuberculosis. Infect Immun 69: 2692–2699

    Article  PubMed  CAS  Google Scholar 

  • Kyei GB, Vergne I, Chua J et al (2006) Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO J 25: 5250–5259

    Article  PubMed  CAS  Google Scholar 

  • Lee CG, Homer R, Zhu Z et al (2001) Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 194: 809–821

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11: 105–128

    Article  PubMed  CAS  Google Scholar 

  • Lienhardt C, Azzurri A, Amedei A et al (2002) Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. Eur J Immunol 32: 1605–1613

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Zhang M, Hofman FM et al (1996) Absence of a prominent Th2 cytokine response in human tuberculosis. Infect Immun 64: 1351–1356

    PubMed  CAS  Google Scholar 

  • Linzmeier R, Ho CH, Hoang BV et al (1999) A 450-kb contig of defensin genes on human chromosome 8p23. Gene 233: 205–211

    Article  PubMed  CAS  Google Scholar 

  • MacMicking JD, North RJ, LaCourse R et al (1997) Identification of nitric oxide synthase as a protective locus in human tuberculosis. Proc Natl Acad Sci USA 94: 5243–5248

    Article  PubMed  CAS  Google Scholar 

  • Malhotra I, Mungai P, Wamachi A et al (1999) Helminth-and Bacillus Calmette-Guerin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J Immunol 162: 6843–6848

    PubMed  CAS  Google Scholar 

  • Marchant A, Amedei A, Azzurri A et al (2001) Polarization of PPD-Specific T-cell response of patients with tuberculosis from Th0 to Th1 profile after successful antimycobacterial therapy or in vitro conditioning with interferon-alpha or interleukin-12. Am J Respir Cell Mol Biol 24: 187–194

    PubMed  CAS  Google Scholar 

  • Martinez Cordero E, González MM, Aguilar LD et al (2008) Alpha-1-acid glycoprotein, its local production and immunopathological participation in experimental pulmonary tuberculosis. Tuberculosis 88: 203–211

    Article  PubMed  CAS  Google Scholar 

  • Miller BH, Fratti RA, Poschet JF et al (2004) Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect Immun 72: 2872–2878

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa Y, Ratnakar P, Rao AG et al (1996) In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. Infect Immun 64: 926–932

    PubMed  CAS  Google Scholar 

  • Moreira AL, Sampaio EP, Zmuidzinas A et al (1993) Thalidomide exerts its inhibitory effect on tumor necrosis factor by enhancing mRNA degradation. J Exp Med 177: 1675–1680

    Article  PubMed  CAS  Google Scholar 

  • Muller I, Cobbold SP, Waldmann H et al (1987) Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect Immun 55: 2037–2041

    PubMed  CAS  Google Scholar 

  • Nicholson S, Bonecini-Almeida Mda G, Lapae Silva JR et al (1996) Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183: 2293–2302

    Article  PubMed  CAS  Google Scholar 

  • O’Garra A, Vieira P (2004) Regulatory T cells and mechanisms of immune system control. Nat Med 10: 801–805

    Article  PubMed  CAS  Google Scholar 

  • Oddo M, Renno T, Attinger A et al (1998) Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol 160: 5448–5454

    PubMed  CAS  Google Scholar 

  • Ogata K, Linzer BA, Zuberi RI et al (1992) Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium-Mycobacterium intracellulare. Infect Immun 60: 4720–4725

    PubMed  CAS  Google Scholar 

  • Onwubalili JK, Scott GM, Smith H (1986) Acute respiratory distress related to chemotherapy of advanced pulmonary tuberculosis a study of two cases and review of the literature. Q J Med 59: 599–610

    PubMed  CAS  Google Scholar 

  • Pedroza-Gonzalez A, Garcia-Romo GS, Aguilar-Leon D et al (2004) In situ analysis of lung antigen-presenting cells during murine pulmonary infection with virulent Mycobacterium tuberculosis. Int J Exp Pathol 85: 135–145

    Article  PubMed  Google Scholar 

  • Peterson PK, Gekker G, Hu S et al (1995) CD14 receptor-mediated uptake of nonopsonized Mycobacterium tuberculosis by human microglia. Infect Immun 63: 1598–1602

    PubMed  CAS  Google Scholar 

  • Phipps RP, Stein SH, Roper RL (1991) A new view of prostaglandin E regulation of the immune response. Immunol Today 12: 349–352

    Article  PubMed  CAS  Google Scholar 

  • Post FA, Soule SG, Willcox PA et al (1994) The spectrum of endocrine dysfunction in active tuberculosis. Clin Endocrinol 40: 367–371

    CAS  Google Scholar 

  • Randhawa AK, Ziltener HJ, Merzaban JS et al (2005) CD43 is required for optimal growth inhibition of Mycobacterium tuberculosis in macrophages and in mice. J Immunol 175: 1805–1812

    PubMed  CAS  Google Scholar 

  • Rangel Moreno J, Estrada Garcia I, De La LuzGarcia Hernandez M. et al (2002) The role of prostaglandin E2 in the immunopathogenesis of experimental pulmonary tuberculosis. Immunology 106: 257–266

    Article  PubMed  Google Scholar 

  • Reljic R, Clark SO, Williams A et al (2006) Intranasal IFN-gamma extends passive IgA antibody protection of mice against Mycobacterium tuberculosis lung infection. Clin Exp Immunol 143: 467–473

    Article  PubMed  CAS  Google Scholar 

  • Relloso M, Puig-Kroger A, Pello OM et al (2002) DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-beta, and anti-inflammatory agents. J Immunol 168: 2634–2643

    PubMed  CAS  Google Scholar 

  • Ribeiro-Rodriguez R, Resende Co T, Rojas R et al (2006) A role for CD4+ CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144: 25–34

    Article  CAS  Google Scholar 

  • Rios-Barrera VA, Campos-Peña V, Aguilar-Leon D et al (2006) Macrophage and T lymphocyte apoptosis during experimental pulmonary tuberculosis: Their relationship to mycobacterial virulence. Eur J Immunol 36: 345–353

    Article  PubMed  CAS  Google Scholar 

  • Rivas-Santiago B, Contreras JC, Sada E et al (2008) The potencial role of lung epithelial cells and beta defensins in experimental latent tuberculosis. Scan J Immunol 67: 448–452

    Article  CAS  Google Scholar 

  • Rivas-Santiago B, Sada E, Tsutsumi V (2006) beta-Defensin gene expression during the course of experimental tuberculosis infection. J Infect Dis 194: 697–701

    Article  PubMed  CAS  Google Scholar 

  • Rivas-Santiago B, Schwander SK, Sarabia C et al (2005) Human {beta}-defensin 2 is expressed and associated with Mycobacterium tuberculosis during infection of human alveolar epithelial cells. Infect Immun 73: 4505–4511

    Article  PubMed  CAS  Google Scholar 

  • Roberts T, Beyers N, Aguirre A et al (2007) Immunosuppression during active tuberculosis is characterized by decreased interferon gamma production and CD25 expression with elevated for knead box P3, transforming growth factor beta and interleukin 4 in RNA levels. J Infect Dis 195: 870–878

    Article  PubMed  CAS  Google Scholar 

  • Rook G, Baker R, Walker B et al (2000) Local regulation of glucocorticoid activity in sites of inflammation. Insights from the study of tuberculosis. Ann NY Acad Sci 917: 913–922

    CAS  Google Scholar 

  • Rook GA, Dheda K, Zumla A (2005) Immune responses in developing countries; implications for new vaccines. Nat Rev Immunol 5: 661–667

    Article  PubMed  CAS  Google Scholar 

  • Rook GA, Hernandez-Pando R (1996) The pathogenesis of tuberculosis. Ann Rev Microbiol 50: 259–284

    Article  CAS  Google Scholar 

  • Rook GA, Hernandez-Pando R, Dheda K et al (2004) IL-4 in tuberculosis: implications for vaccine design. Trends Immunol 25: 483–488

    Article  PubMed  CAS  Google Scholar 

  • Rook GA, Hernandez-Pando R, Lightman S (1994) Hormones, peripherally activated prohormones and regulation of the Th1/Th2 balance. Immunol Today 15: 301–303

    Article  PubMed  CAS  Google Scholar 

  • Rook GA, Honour J, Kon OM et al (1996) Urinary adrenal steroid metabolites in tuberculosis – a new clue to pathogenesis. Q J Med 89: 333–342

    Google Scholar 

  • Rook GA, Lowrie DB, Hernandez-Pando R (2007) Immunotherapeutics for tuberculosis in experimental animals: Is there a common pathway activated by effective protocols. J Infect Dis 196: 191–198

    Article  PubMed  CAS  Google Scholar 

  • Sanchez FO, Rodriguez JI, Agudelo G et al (1994) Immune responsiveness and lymphokine production in patients with tuberculosis and healthy controls. Infect Immun 62: 5673–5678

    PubMed  CAS  Google Scholar 

  • Sarma GR, Immanuel C, Ramachandran G et al (1990) Adrenocortical function in patients with pulmonary tuberculosis. Tubercle 71: 277–282

    Article  PubMed  CAS  Google Scholar 

  • Scanga CA, Mohan VP, Yu K et al (2000) Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med 192: 347–358

    Article  PubMed  CAS  Google Scholar 

  • Schauf V, Rom WN, Smith KA et al (1993) Cytokine gene activation and modified responsiveness to interleukin-2 in the blood of tuberculosis patients. J Infect Dis 168: 1056–1059

    PubMed  CAS  Google Scholar 

  • Schlesinger LS (1993) Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150: 2920–2930

    PubMed  CAS  Google Scholar 

  • Schlesinger LS, Bellinger-Kawahara CG, Payne NR et al (1990) Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144: 2771–2780

    PubMed  CAS  Google Scholar 

  • Scott GM, Murphy PG, Gemidjioglu ME (1990) Predicting deterioration of treated tuberculosis by corticosteroid reserve and C-reactive protein. J Infect 21: 61–69

    Article  PubMed  CAS  Google Scholar 

  • Seah GT, Scott GM, Rook GA (2000) Type 2 cytokine gene activation and its relationship to extent of disease in patients with tuberculosis. J Infect Dis 181: 385–359

    Google Scholar 

  • Selsted ME, Harwig SS (1987) Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. Infect Immun 55: 2281–2286

    PubMed  CAS  Google Scholar 

  • Selsted ME, Szklarek D, Ganz T et al (1985) Activity of rabbit leukocyte peptides against Candida albicans. Infect Immun 49: 202–206

    PubMed  CAS  Google Scholar 

  • Serbina NV, Flynn JL (1999) Early emergence of CD8(+) T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect Immun 67: 3980–3988

    PubMed  CAS  Google Scholar 

  • Serbina NV, Lazarevic V, Flynn JL (2001) CD4(+) T cells are required for the development of cytotoxic CD8(+) T cells during Mycobacterium tuberculosis infection. J Immunol 167: 6991–7000

    PubMed  CAS  Google Scholar 

  • Sharma S, Verma I, Khuller GK (2001) Therapeutic potential of human neutrophil peptide 1 against experimental tuberculosis. Antimicrob Agents Chemother 45: 639–640

    Article  PubMed  CAS  Google Scholar 

  • Spence DP, Hotchkiss J, Williams CS et al (1993) Tuberculosis and poverty. Br Med J 307: 759–761

    Article  CAS  Google Scholar 

  • Steinman RM (2001) Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J Med 68: 160–166

    PubMed  CAS  Google Scholar 

  • Stenger S, Hanson DA, Teitelbaum R et al (1998a) An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282: 121–125

    Article  PubMed  CAS  Google Scholar 

  • Stenger S, Mazzaccaro RJ, Uyemura K et al (1997) Differential effects of cytolytic T cell subsets on intracellular infection. Science 276: 1684–1687

    Article  PubMed  CAS  Google Scholar 

  • Stenger S, Niazi KR, Modlin RL (1998b) Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 161: 3582–3588

    PubMed  CAS  Google Scholar 

  • Stock P, Akbari O, Berry G et al (2004) Induction of T helper type 1-like regulatory cells that express Foxp3 and protect against airway hyper reactivity. Nat Immunol 5: 1149–1156

    Article  PubMed  CAS  Google Scholar 

  • Sturgill-Koszycki S, Schlesinger PH, Chakraborty P et al (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263: 678–681

    Article  PubMed  CAS  Google Scholar 

  • Tailleux L, Schwartz O, Herrmann JL et al (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197: 121–127

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum R, Glatman-Freedman A, Chen B et al (1998) A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc Natl Acad Sci USA 95: 15688–15693

    Article  PubMed  CAS  Google Scholar 

  • Tobach E, Bloch H (1956) Effects of crowding prior to and following tuberculous infection. Am J Physiol 187: 399–402

    PubMed  Google Scholar 

  • Toossi Z, Gogate P, Shiratsuchi H et al (1995) Enhanced production of TGF-beta by blood monocytes from patients with active tuberculosis and presence of TGF-beta in tuberculous granulomatous lung lesions. J Immunol 154: 465–473

    PubMed  CAS  Google Scholar 

  • Turley SJ, Inaba K, Garrett WS et al (2000) Transport of peptide-MHC class II complexes in developing dendritic cells. Science 288: 522–527

    Article  PubMed  CAS  Google Scholar 

  • van Crevel R, Karyadi E, Preyers F et al (2000) Increased production of interleukin 4 by CD4+ and CD8+ T cells from patients with tuberculosis is related to the presence of pulmonary cavities. J Infect Dis 181: 1194–1197

    Article  PubMed  Google Scholar 

  • Via LE, Deretic D, Ulmer RJ et al (1997) Arrest of mycobacterial phagosome maturation is caused by a block in vescicle fusion between stages controlled by rab5 and rab7. J Biol Chem 272: 13326–13331

    Article  PubMed  CAS  Google Scholar 

  • Wickremasinghe MI, Thomas LH, Friedland JS (1999) Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kappa B-dependent network. J Immunol 163: 3936–3947

    PubMed  CAS  Google Scholar 

  • Wilkinson KA, Martin TD, Reba SM et al (2000) Latency-associated peptide of transforming growth factor beta enhances mycobacteriocidal immunity in the lung during Mycobacterium bovis BCG infection in C57BL/6 mice. Infect Immun 68: 6505–6508

    Article  PubMed  CAS  Google Scholar 

  • Williams A, Reljic R, Naylor I et al (2004) Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs. Immunology 111: 328–333

    Article  PubMed  CAS  Google Scholar 

  • Yong AJ, Grange JM, Tee RD et al (1989) Total and anti-mycobacterial IgE levels in serum from patients with tuberculosis and leprosy. Tubercle 70: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Zimmerli S, Edwards S, Ernst JD (1996) Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages. Am J Respir Cell Mol Biol 15: 760–770

    PubMed  CAS  Google Scholar 

  • Zuckerman SH, Shellhaas J, Butler LD (1989) Differential regulation of lipopolysaccharide-induced interleukin 1 and tumor necrosis factor synthesis: effects of endogenous and exogenous glucocorticoids and the role of the pituitary-adrenal axis. Eur J Immunol 19: 301–305

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogelio Hernandez-Pando.

About this article

Cite this article

Hernandez-Pando, R., Orozco, H. & Aguilar, D. Factors that deregulate the protective immune response in tuberculosis. Arch. Immunol. Ther. Exp. 57, 355–367 (2009). https://doi.org/10.1007/s00005-009-0042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-009-0042-9

Keywords

Navigation