Skip to main content

Cardiovascular Assessment

  • Chapter
  • First Online:
Nursing in Critical Care Setting
  • 2790 Accesses

Abstract

Cardiovascular monitoring allows the assessment of cardiac function and tissue perfusion. During the last century, cardiovascular monitoring reached very important progresses, concerning the measurement of blood pressures and the evaluation of the electrical activity. Oxygen demand and consumption has also become an important component of cardiovascular assessment, and further evolutions during the past decades allowed the measurement of blood flow and blood volume. Such improvements guide clinicians in choosing the best strategies in cardiac dysfunction and help targeting the fluid and drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Thompson JP, Mahajan RP. Monitoring the monitors—beyond risk management. Br J Anaesth. 2006;97:1–3. https://doi.org/10.1093/bja/ael139.

    Article  PubMed  CAS  Google Scholar 

  2. Hofer CK, Cecconi M, Marx G, della Rocca G. Minimally invasive haemodynamic monitoring. Eur J Anaesthesiol. 2009;26:996–1002.

    Article  PubMed  Google Scholar 

  3. JCGM 200:2008. International vocabulary of metrology—basic and general concepts and associated terms (VIM). http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf. Accessed 30 Jul 2017.

  4. Hannibal GB. It started with Einthoven: the history of the ECG and cardiac monitoring. AACN Adv Crit Care. 2011;22:93–6. https://doi.org/10.1097/10.1097/NCI.0b013e3181fffe4c.

    Article  PubMed  Google Scholar 

  5. Petty BG. Basic electrocardiography. New York: Springer; 2015. https://doi.org/10.1007/978-1-4939-2413-4.

    Book  Google Scholar 

  6. Drew BJ, Califf RM, Funk M, et al. Practice standards for electrocardiographic monitoring in hospital settings: an American Heart Association scientific statement from the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young: endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical-Care Nurses. Circulation. 2004;110:2721–46. https://doi.org/10.1161/01.CIR.0000145144.56673.59.

    Article  PubMed  Google Scholar 

  7. Baranchuk A, Shaw C, Alanazi H, Campbell D, Bally K, Redfearn DP, et al. Electrocardiography pitfalls and artifacts: the 10 commandments. Crit Care Nurse. 2009;29:67–73. https://doi.org/10.4037/ccn2009607.

    Article  PubMed  Google Scholar 

  8. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447–51. https://doi.org/10.1056/NEJM197008272830902.

    Article  PubMed  CAS  Google Scholar 

  9. Moise SF, Sinclair CJ, Scott DH. Pulmonary artery blood temperature and the measurement of cardiac output by thermodilution. Anaesthesia. 2002;57(6):562.

    Article  CAS  PubMed  Google Scholar 

  10. Richard C, Warszawskj J, ANguel N, Deye N, Combes A, Barnoud D, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2003;290:2713–20. https://doi.org/10.1001/jama.290.20.2713.

    Article  PubMed  CAS  Google Scholar 

  11. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Melbourne D, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomized controlled trial. Lancet. 2005;366:472–7. https://doi.org/10.1016/S0140-6736(05)67061-4.

    Article  PubMed  Google Scholar 

  12. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, et al. A randomized, controlled trial of the use of pulmonary-artery catheter in high risk surgical patients. N Engl J Med. 2003;348:5–14. https://doi.org/10.1056/NEJMoa021108.

    Article  PubMed  Google Scholar 

  13. Wheeler AP, Bernard GR, Thompson BT, Shoenfeld D, Wiedmann HP, deBoisblanc B, et al. Pulmonary artery versus central venous catheter to guide treatment of acute lung injury. National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome (ARDS). N Engl J Med. 2006;354:2213–24. https://doi.org/10.1056/NEJMoa061895.

    Article  PubMed  Google Scholar 

  14. McGee WT, Headley JM, Frazier JA. Quick guide to cardiopulmonary care. 2014. http://ht.edwards.com/scin/edwards/eu/sitecollectionimages/products/pressuremonitoring/ar11206-quickguide3rded.pdf. Accessed 7 Nov 2016.

  15. Cottis R, Magee N, Higgins DJ. Haemodynamic monitoring with pulse-induced contour cardiac output (PiCCO) in critical care. Intensive Crit Care Nurs. 2003;19:301–7.

    Article  PubMed  Google Scholar 

  16. de Waal EE, Wappler F, Buhre WF. Cardiac output monitoring. Curr Opin Anaesthesiol. 2009;22:71–7. https://doi.org/10.1097/ACO.0b013e32831f44d0.

    Article  PubMed  Google Scholar 

  17. Mayer J, Suttner S. Cardiac output derived from arterial pressure waveform. Curr Opin Anaesthesiol. 2009;22:804–8. https://doi.org/10.1097/ACO.0b013e328332a473.

    Article  PubMed  Google Scholar 

  18. Sakka SG. Hemodynamic monitoring in the critically ill patient—current status and perspective. Front Med. 2015;2:44. https://doi.org/10.3389/fmed.2015.00044.

    Article  Google Scholar 

  19. McGhee BH, Bridges EJ. Monitoring arterial blood pressure: what you may not know. Crit Care Nurse. 2002;22:60–4, 66–70. 73 passim

    Google Scholar 

  20. Pittman JA, Ping JS, Mark JB. Arterial and central venous pressure monitoring. Int Anesthesiol Clin. 2004;42:13–30.

    Article  PubMed  Google Scholar 

  21. Augusto JF, Teboul JL, Radermacher P, Asfar P. Interpretation of blood pressure signal: physiological bases, clinical relevance, and objectives during shock states. Intensive Care Med. 2011;37:411–9. https://doi.org/10.1007/s00134-010-2092-1.

    Article  PubMed  Google Scholar 

  22. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.

    Article  PubMed  Google Scholar 

  23. Keckeisen M. Monitoring pulmonary artery pressure. Crit Care Nurse. 2004;24:67–70.

    Google Scholar 

  24. Bridges EJ. Pulmonary artery pressure monitoring: when, how and what else to use. AACN Adv Crit Care. 2006;17:286–305.

    PubMed  Google Scholar 

  25. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D42–50. https://doi.org/10.1016/j.jacc.2013.10.032.

    Article  PubMed  Google Scholar 

  26. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34–41. https://doi.org/10.1016/j.jacc.2013.10.029.

    Article  PubMed  Google Scholar 

  27. Goodrich C. Continuous central venous oximetry monitoring. Crit Care Nurs Clin North Am. 2006;18:203–209., x. https://doi.org/10.1016/j.ccell.2006.01.005.

    Article  PubMed  Google Scholar 

  28. Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2011;184:514–20. https://doi.org/10.1164/rccm.201010-1584CI.

    Article  PubMed  Google Scholar 

  29. Kopterides P, Bonovas S, Mavrou I, Kostadima E, Zakynthinos E, Armaganidis A. Venous oxygen saturation and lactate gradient from superior vena cava to pulmonary artery in patients with septic shock. Shock. 2009;31:561–7. https://doi.org/10.1097/SHK.0b013e31818bb8d8.

    Article  PubMed  Google Scholar 

  30. Varpula M, Karlsson S, Ruokonen E, Pettilä V. Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med. 2006;32:1336–43. https://doi.org/10.1007/s00134-006-0270-y.

    Article  PubMed  Google Scholar 

  31. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy collaborative group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77. https://doi.org/10.1056/NEJMoa010307.

    Article  PubMed  CAS  Google Scholar 

  32. Reid M. Central venous oxygen saturation: analysis, clinical use and effects on mortality. Nurs Crit Care. 2013;18:245–50. https://doi.org/10.1111/nicc.12028.

    Article  PubMed  Google Scholar 

  33. Perz S, Uhlig T, Kohl M, Bredle DL, Reinhart K, Bauer M, Kortgen A. Low and supranormal central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery patients: a prospective observational study. Intensive Care Med. 2011;37:52–9. https://doi.org/10.1007/s00134-010-1980-8.

    Article  PubMed  CAS  Google Scholar 

  34. Magder S. How to use central venous pressure measurements. Curr Opin Crit Care. 2005;11:264–70.

    Article  PubMed  Google Scholar 

  35. Magder S. Central venous pressure monitoring. Curr Opin Crit Care. 2006;12:219–27. https://doi.org/10.1097/01.ccx.0000224866.01453.43.

    Article  PubMed  Google Scholar 

  36. Robin E, Costecalde M, Lebuffe G, Vallet B. Clinical relevance of data from the pulmonary artery catheter. Crit Care. 2006;10(Suppl 3):S3. https://doi.org/10.1186/cc4830.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sakka SG, Rühl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, et al. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26:180–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kapoor PM, Bhardwaj V, Sharma A, Kiran U. Global end-diastolic volume an emerging preload marker vis-a-vis other markers—have we reached our goal? Ann Card Anaesth. 2016;19:699–704. https://doi.org/10.4103/0971-9784.191554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Della Rocca G, Costa GM, Coccia C, Pompei L, Di Marco P, Pietropaoli P. Preload index: pulmonary artery occlusion pressure versus intrathoracic blood volume monitoring during lung transplantation. Anesth Analg. 2002;95:835–43.

    PubMed  Google Scholar 

  40. Della Rocca G, Costa MG, Coccia C, Pompei L, Pietropaoli P. Preolad and haemodynamic assessment during liver transplantation: a comparison between the pulmonary artery catheter and transpulmonary indicator dilution technique. Eur J Anaesthesiol. 2002;19:868–75.

    Article  CAS  PubMed  Google Scholar 

  41. Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A. Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care. 1999;14:78–83.

    Article  CAS  PubMed  Google Scholar 

  42. Lange NR, Schuster DP. The measurement of lung water. Crit Care. 1999;3:R19–24. https://doi.org/10.1186/cc342.DOI:10.1186/cc342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Shyamsundar M, Attwood B, Keating L, Walden AP. Clinical review: the role of ultrasound in estimating extra-vascular lung water. Crit Care. 2013;17:237. https://doi.org/10.1186/cc12710.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Volpicelli G, Skurzak S, Boero E, Carpinteri G, Tengattini M, Stefanone V, et al. Lung ultrasound predicts well extravascular lung water but is of limited usefulness in the prediction of wedge pressure. Anesthesiology. 2014;121:320–7. https://doi.org/10.1097/ALN.0000000000000300.

    Article  PubMed  Google Scholar 

  45. Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care. 2015;5:38. https://doi.org/10.1186/s13613-015-0081-9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tagami T, Kushimoto S, Yamamoto Y, Atsumi T, Tosa R, Matsuda K, et al. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care. 2010;14:R162. https://doi.org/10.1186/cc9250.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tagami T, Sawabe M, Kushimoto S, Marik PE, Mieno MN, Kawaguchi T, et al. Quantitative diagnosis of diffuse alveolar damage using extravascular lung water. Crit Care Med. 2013;41(9):2144–50. https://doi.org/10.1097/CCM.0b013e31828a4643.

    Article  PubMed  Google Scholar 

  48. Craig TR, Duffy MJ, Shyamsundar M, McDowell C, McLaughlin B, Elborn JS, et al. Extravascular lung water indexed to predicted body weight is a novel predictor of intensive care unit mortality in patients with acute lung injury. Crit Care Med. 2010;38:114–20. https://doi.org/10.1097/CCM.0b013e3181b43050.

    Article  PubMed  Google Scholar 

  49. Huber W, Mair S, Götz SQ, Tschirdewahn J, Siegel J, Schmid RM, et al. Extravascular lung water and its association with weight, height, age, and gender: a study in intensive care unit patients. Intensive Care Med. 2013;39:146–50. https://doi.org/10.1007/s00134-012-2745-3.

    Article  PubMed  Google Scholar 

  50. Sakka SG, Klein M, Reinhart K, et al. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122:2080–6.

    Article  PubMed  Google Scholar 

  51. Mitchell JP, Schuller D, Calandrino FS, Schuster DP. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis. 1992;145:990–8. https://doi.org/10.1164/ajrccm/145.5.990.

    Article  PubMed  CAS  Google Scholar 

  52. Redondo Calvo FJ, Bejarano Ramirez N, Uña Orejon R, Villazala Garcia R, Yuste Peña AS, et al. Elevated extravascular lung water index (ELWI) as a predictor of failure of continuous positive airway pressure via helmet (helmet-CPAP) in patients with acute respiratory failure after major surgery. Arch Bronconeumol. 2015;51:558–63. https://doi.org/10.1016/j.arbres.2015.01.012.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irene Comisso or Alberto Lucchini .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Comisso, I., Lucchini, A. (2018). Cardiovascular Assessment. In: Nursing in Critical Care Setting. Springer, Cham. https://doi.org/10.1007/978-3-319-50559-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50559-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50558-9

  • Online ISBN: 978-3-319-50559-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics