Skip to main content

The Origin and Evolution of Complex Enough Systems in Biology

  • Conference paper
  • First Online:
Quantum Systems in Physics, Chemistry, and Biology

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 30))

Abstract

Recent criticisms of Neo-Darwinism are considered and disputed within the setting of recent advances in chemical physics. A related query, viz., the ontological thesis, that everything is physical, confronts a crucial test on the validity of reductionism as a fundamental approach to science. While traditional ‘physicalism’ interprets evolution as a sequence of physical accidents governed by the second law of thermodynamics, the concepts of biology concern processes that owe their goal-directedness to the influence of an evolved program. This disagreement is met by unifying basic aspects of chemistry and physics, formulating the Correlated Dissipative Ensemble, CDE, as a characterization of a ‘complex enough systems’, CES, in biology. The latter entreats dissipative dynamics; non-Hermitian quantum mechanics together with modern quantum statistics thereby establishing a precise spatio-temporal order of significance for living systems. The CDE grants a unitary transformation structure that comprises communication protocols of embedded Poisson statistics for molecular recognition and cellular differentiation, providing cell-hierarchies in the organism. The present conception of evolution, founded on communication with a built-in self-referential order, offers a valid argument in favour of Neo-Darwinism, providing an altogether solid response and answer to the criticisms voiced above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the present representation of the spatio-temporal order is neither Boolean, Bayesian, scale free, decision making or any other classical version. It is neither strictly a quantum network, cf. quantum computational schemes lacking self-referentiability. Since the actual communication network includes self-references they are denoted as Gödelian networks.

  2. 2.

    This extension rests on a rigorous mathematical theory, based on the Balslev-Combes theorem [32] and it is vital to understand and appreciate non-Hermitian quantum mechanics and its consequences for the dynamics of resonance states embedded in the continuum and their properties for higher order dynamics.

  3. 3.

    The celebrated concept of ODLRO was developed by Yang [29] about 15 years after the publication of the famous Bardeen - Cooper - Schrieffer theory of super-conductivity, for a comparison see [51]. The formulation does focus on the collective properties of matter at sufficiently low temperatures. For a physical system approaching zero temperature with a non-degenerate ground state the entropy goes to zero. Under specific conditions the system does develop ODLRO.

  4. 4.

    This issue will be discussed in more detail elsewhere.

References

  1. Tegmark M (2003) Parallel Universes. Sci Am

    Google Scholar 

  2. Löwdin P-O (1988) The mathematical definition of a molecule and molecular structure. In Maruani J (ed) Molecules in physics, chemistry, and biology, vol 2. Kluwer Academic Publishers, p 3

    Google Scholar 

  3. Mayr E (1974) Teleological and teleonomic: a new analysis. Boston Stud Philos Sci 14:91

    Article  Google Scholar 

  4. Mayr E (2004) What makes biology unique?. Cambridge University Press, New York

    Book  Google Scholar 

  5. Weinberg S (1994) Dreams of a Final theory: the scientists search for the ultimate laws. Vintage Books, Random House, Inc. New York

    Google Scholar 

  6. Dirac PAM (1929) Quantum mechanics of many-electron systems. Proc R Soc A123(792):714

    Article  Google Scholar 

  7. Wiesberg M, Needham P, Hendry R (2011) Philosophy of chemistry, the stanford encyclopedia of philosophy. Zalta E. N. (ed). http://plato.stanford.edu/archives/sum2012/entries/reduction-biology/

  8. Brändas EJ (2015) Proposed explanation of the phi phenomenon from a basic neural viewpoint. Quantum Biosyst 6(1):160

    Google Scholar 

  9. Brändas EJ (2015) A zero energy universe scenario: from unstable chemical states to biological evolution and cosmological order. In: Nascimento MAC, Maruani J, Brändas EJ, Delgado-Barrio G (eds) Frontiers in quantum methods and applications in chemistry and physics, vol 29. Springer, Dordrecht, p 247

    Google Scholar 

  10. Dawkins R (1976) The selfish gene. Oxford University Press, New York

    Google Scholar 

  11. Jablonka E, Lamb M (2005) Evolution in four dimension—genetic, epigenetic, behavioral, and symbolic variation in the history of life. The MIT Press, Cambridge

    Google Scholar 

  12. Deacon TW (2012) Incomplete nature: how mind emerged from matter. W. W. Norton & Company, New York, London

    Google Scholar 

  13. Nagel T (2012) MIND & COSMOS: why the materialist neo-darwinian conception of nature is almost certainly false. Oxford University Press, Oxford, New York

    Book  Google Scholar 

  14. Fodor J, Piattelli-Palmarini M (2010) What Darwin got wrong. Farrar, Strauss and Giroux, New York

    Google Scholar 

  15. Logan RK (2012) Review and précis of Terrence Deacon’s incomplete nature: how mind emerged from matter. Information 3:290

    Article  Google Scholar 

  16. Allen Orr H (2013) Awaiting a New Darwin. The New York Review of Books, vol 60, p 2

    Google Scholar 

  17. Ferguson A (2013) The Heretic. The Weekly Standard, vol 18, p 27

    Google Scholar 

  18. Rosenberg A (2013) How Jerry Fodor slid down the slippery slope to Anti-Darwinism, and how we can avoid the same fate. Eur J Philos Sci 3(1):1

    Article  Google Scholar 

  19. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a criticism of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581

    Article  CAS  Google Scholar 

  20. Brändas EJ (2012) Examining the limits of physical theory: analytical principles and logical implications. In: Nicolaides CA Brändas EJ (eds) Unstable states in the continuous spectra, Part II: Interpretation, theory, and applications. Advances in Quantum Chemistry, vol 63. Elsevier, Amsterdam, p 33

    Google Scholar 

  21. Mayr E (2001) What evolution is. Basic Books New York

    Google Scholar 

  22. Rosenberg A (1985) The structure of biological science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Fodor JA (1980) Special sciences, or the disunity of science as a working hypothesis. Read Philos Psychol 1:120

    Google Scholar 

  24. Macdonald G, Papineau D (eds) (2006) Teleosemantics: new philosophical essays. Oxford University Press Inc, New York, p 1

    Google Scholar 

  25. Löwdin P-O (1967) Program. Nature of quantum chemistry. Int J Quantum Chem 1:1

    Google Scholar 

  26. Löwdin P-O (1998) Linear algebra for quantum theory. John Wiley & Sons, New York

    Google Scholar 

  27. Prigogine I (1996) The end of certainty: time, chaos, and the new laws of nature. The Free Press, New York

    Google Scholar 

  28. Obcemea CH, Brändas EJ (1983) Analysis of Prigogine’s theory of subdynamics. Ann Phys 151:383

    Article  CAS  Google Scholar 

  29. Yang CN (1962) Concept of off-diagonal long-range order and the quantum phases of liquid helium and of superconductors. Rev Mod Phys 34:694

    Article  CAS  Google Scholar 

  30. Sasaki F (1965) Eigenvalues of fermion density matrices. Phys Rev 138B:1338

    Article  Google Scholar 

  31. Coleman AJ (1963) Structure of fermion density matrices. Rev Mod Phys 35:668

    Article  Google Scholar 

  32. Balslev E, Combes JM (1971) Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Commun Math Phys 22:280

    Article  Google Scholar 

  33. Nicolaides CA, Brändas EJ (eds) (2010) Unstable states in the continuous spectra, Part I: analysis, concepts, methods, and results. Advanced Quantum Chemistry, vol 60, p 1

    Google Scholar 

  34. Nicolaides CA, Brändas EJ (eds) (2012) Unstable states in the continuous spectra, part ii: interpretation, theory and, applications. Advanced Quantum Chemistry, vol 63, p 1

    Google Scholar 

  35. Moiseyev N (2011) Non-Hermitian quantum mechanics. Cambridge University Press, New York

    Book  Google Scholar 

  36. Brändas EJ (2011) Gödelian structures and self-organization in biological systems. Int J Quantum Chem 111:1321

    Article  Google Scholar 

  37. Lucas JR (1961) Minds Machines and Gödel. Philosophy 36:112

    Article  Google Scholar 

  38. Seel M, Ladik J (1986) The tragicomedy of modern theoretical biology. In: Weingartner P, Dorn G (eds) Foundations of Biology: A Selection of Papers Contributed to the Biology Section of the 7th International Congress of Logic, Methodology and Philosophy of Science. Verlag Hölder-Pichler-Tempsky, Vienna, p 145

    Google Scholar 

  39. Penrose R (1994) Shadows of the mind: a search for the missing science of consciousness. Oxford University Press, Oxford

    Google Scholar 

  40. Feferman S (2011) Gödel’s incompleteness theorems, free will and mathematical thought. In: Swinburne R (ed) Free will and modern science. Oxford University Press for the British Academy, London, p 102

    Google Scholar 

  41. Semon R (1904) Die Mneme. W. Engelmann, Leipzig

    Google Scholar 

  42. Deutsch D (2011) The beginning of infinity. Viking, Penguin, New York

    Google Scholar 

  43. Primas H (1983) Chemistry, Quantum mechanics and reductionism. perspectives in theoretical chemistry. Springer, Berlin

    Book  Google Scholar 

  44. Sklar L (1993) Physics and chance philosophical issues in the foundations of statistical mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  45. Rittby M, Elander N, Brändas E (1983) Scattering in view of the Titchmarsh-Weyl Theory. Int J Quantum Chem 23:865

    Article  CAS  Google Scholar 

  46. Hehenberger M, McIntosh HV, Brändas E (1974) Weyl’s theory applied to the Stark effect in the hydrogen atom. Phys Rev A 10:1494

    Article  CAS  Google Scholar 

  47. Brändas E, Froelich P (1977) Continuum orbitals, complex scaling and the extended virial theorem. Phys Rev A 16:2207

    Article  Google Scholar 

  48. Howland JS (1983) Complex scaling of ac Stark Hamiltonians. J Math Phys 24:1240

    Article  CAS  Google Scholar 

  49. Löwdin P-O (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin orbitals, and convergence problems in the method of configuration interaction. Phys Rev 97:1474

    Article  Google Scholar 

  50. Dunne LJ, Murrell JN, Brändas EJ (1990) Off-diagonal long-range order from repulsive electronic correlations in the ground state of a two-dimensional localized model of a high-TC cuprate superconductor. Phys C 169:501

    Article  CAS  Google Scholar 

  51. Brändas EJ, Dunne LJ (2014) Bardeen-Cooper-Schrieffer (BCS) theory and Yang’s Concept of Long-Range Order (ODLRO). Mol Phys 112:694

    Article  Google Scholar 

  52. Chatzidimitriou-Dreismann CA, Brändas EJ, Karlsson E (1990) quantum correlation effects in the spin dynamics of Gd at high temperatures in the light of complex dilation theory. Phys Rev Rapid Commun B 42:2704

    Article  CAS  Google Scholar 

  53. Chatzidimitriou-Dreismann CA, Brändas EJ (1991) Proton delocalization and thermally activated quantum correlations in water: complex scaling and new experimental results. Ber Bunsenges Phys Chem 95:263

    Article  CAS  Google Scholar 

  54. Carlson BC, Keller JM (1961) Eigenvalues of density matrices. Phys Rev 121:659

    Article  Google Scholar 

  55. Brändas EJ, Hessmo B (1998) Indirect measurements and the mirror theorem. Lect Notes Phys 504:359

    Article  Google Scholar 

  56. Kumicák J, Brändas EJ (1993) Complex scaling and Lyapunov converters. Int J Quantum Chem 46:391

    Article  Google Scholar 

  57. Prigogine I (1980) From being to becoming, Freeman. W. H Freeman and Company, San Fransisco

    Google Scholar 

  58. Brändas EJ (1995) Relaxation processes and coherent dissipative structures. In: Lippert E, Macomber JD (eds) Dynamics during spectroscopic transitions. Springer, Berlin, p 148

    Google Scholar 

  59. Salari V, Tuszynski J, Rahnama M, Bernroider G (2011) Plausibility of quantum coherent states in biological systems. J Phys Conf Ser 306:1

    Article  Google Scholar 

  60. Brändas EJ (2011) Some comments on the problem of decoherence. Int J Quantum Chem 111:215

    Article  Google Scholar 

  61. Coleman AJ, Yukalov VI (2000) Reduced Density Matrices. Coulson’s Challenge. Lecture notes in chemistry, vol 72. Springer , Berlin, pp 1–282

    Google Scholar 

  62. Brändas EJ, Chatzidimitriou-Dreismann CA (1991) On the connection between certain properties of the second-order reduced density matrix and the occurrence of coherent- dissipative structures in disordered condensed matter. Int J Quantum Chem 40:649

    Article  Google Scholar 

  63. Brändas EJ, Elander N (1989) Resonances the unifying route towards the formulation of dynamical processes—Foundations and applications in nuclear, atomic and molecular physics. Lecture notes in chemistry, vol 325. Springer, Berlin, pp 1–564

    Google Scholar 

  64. Reid CE, Brändas EJ (1989) On a theorem for complex symmetric matrices and its relevance in the study of decay phenomena. Lecture notes in chemistry, vol 325. Springer, Berlin, p 475

    Google Scholar 

  65. Trehub A (1991) The cognitive brain. MIT Press

    Google Scholar 

  66. Fernandes de Lima VM, Pereira Jr. A (2016) The plastic glial-synaptic dynamics within the neurophil: a self-organizing system composed of polyelectrolytes in phase transition. Neural Plasticity, 1

    Google Scholar 

  67. Freeman WJ (2006) A cinematographic hypothesis of cortical dynamics in perception. Int J Psychophysiol 60(2):149

    Article  Google Scholar 

  68. Trehub A (2007) Space, self, and the theatre of consciousness. Conscious Cogn 16:310

    Article  Google Scholar 

  69. Shoham S, O’Connor DH, Segev R (2006) How silent is the brain: is there a “dark matter” problem in neuroscience? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(8):777

    Article  Google Scholar 

  70. Pfeifer R, Hertz HG (1990) Activation energies of the proton-exchange reactions in water measured with the 1H-NMR Spin Echo Technique. Ber Bunsenges Phys Chem 94:1349

    Article  CAS  Google Scholar 

  71. Weingärtner H, Chatzidimitriou-Dreismann CA (1990) Anomalous H+ and D+ conductance in H2O–D2O mixtures. Nature 346:548

    Google Scholar 

  72. Futaqi D, Kitano K (2015) Ryanodine-receptor-driven intracellular calcium dynamics underlying spatial association of synaptic plasticity. J Comput Neurosci 39(3):329

    Article  Google Scholar 

  73. Miller SL, Urey HS (1959) Organic compound synthesis on the primitive earth. Science 130(3370):245

    Article  CAS  Google Scholar 

  74. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528

    Article  CAS  Google Scholar 

  75. Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191(4794):1193

    Article  Google Scholar 

  76. Ayala JF, Arp R (eds) (2010) Contemporary debates in philosophy of biology. Wiley-Blackwell, Chichester, West Sussex

    Google Scholar 

  77. Brändas EJ (2014) The statement of the goals of the international society for theoretical chemical physics. Int J Quantum Chem 114:961

    Article  Google Scholar 

  78. Csaba G, Birzele F, Zimmer R (2009) Systematic comparison of SCOP and CATH: a new standard for protein structure analysis. BMC Struct Biol 9:23

    Article  Google Scholar 

  79. Schmeikal B (2015) Four forms make a universe. Adv Appl Clifford Algebras 25:1

    Article  Google Scholar 

  80. Küppers B-O (2016) The nucleation of semantic information in prebiotic matter. In: Domingo E, Schuster P (eds) Quasispecies: from theory to experimental systems. currrent topics in microbiology and immunology, vol 392. Springer International Publishing Switzerland, p 23

    Google Scholar 

Download references

Acknowledgements

I am grateful to the local organisers of QSCP XX, Prof. Alia Tadjer and Prof. Rossen Pavlov, Sophia, Bulgaria, for generous hospitality and for running an excellent symposium. I thank Arnold Trehub, Bernd Schmeikal and Alfredo Pereira Jr. for their specific insight. This work has over time been supported by the Swedish Natural Science Research Council, the Swedish Foundation for Strategic Research, The European Commission and the Nobel Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkki Brändas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Brändas, E. (2017). The Origin and Evolution of Complex Enough Systems in Biology. In: Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Quantum Systems in Physics, Chemistry, and Biology. Progress in Theoretical Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-50255-7_24

Download citation

Publish with us

Policies and ethics