Skip to main content

Indirect measurements and the mirror theorem: A liouville formulation of quantum mechanics

  • Irreversibility And Measurement In Quantum Mechanics
  • Conference paper
  • First Online:
Irreversibility and Causality Semigroups and Rigged Hilbert Spaces

Part of the book series: Lecture Notes in Physics ((LNP,volume 504-504))

Abstract

It is argued that the indirect measurement in Quantum Mechanics can be objectively formulated via the standard mirror property of noncommuting mappings. In this Liouville like formulation the primary, zero order step, regulates that the quantum probe and the measuring device entangle through objectively defined correlations uniquely prescribed from the mirror theorem. The secondary step of the indirect measurement process is then pictured as a resonance forming and decaying process which couples the phenomenon with the relevant time scales. It is suggested that these correlations lead to a description that guides our intuition towards a more satisfactory comprehension of quantum phenomena. The Liouville like formulation also assumes a stochastic component reminiscent of stochastic resonances in driven nonlinear dynamical systems. The possible relation to quantum aspects of chaos via existence of nonlocal hidden variables further promotes an ontological setting. We illustrate this in some concrete examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bohm, Phys. Rev. 85, 166 (1952).

    Article  MathSciNet  Google Scholar 

  2. J. Bell, Physics 1, 195 (1964).

    Google Scholar 

  3. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  4. A. Aspect, P. Grangier and C. Roger, Phys. Rev. Lett. 47, 460 (1981); 49, 91 (1982)

    Article  Google Scholar 

  5. A. Aspect, J. Dalibard and C. Roger, Phys. Rev. Lett. 49, 1804 (1982).

    Article  MathSciNet  Google Scholar 

  6. J. Lavall, S. Kulin, B. Saubamea, N. Bigelow, M. Leduc, and C. Cohen-Tannoudji, Phys. Rev. Lett. 75, 4194 (1995).

    Article  Google Scholar 

  7. P G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger: A. V. Sergienko and Y, Shih, Phys. Rev. Lett. 75, 4337 (1995).

    Article  Google Scholar 

  8. B. Sherman and G. Kurizki, D. E. Nikonov and M. O. Scully, Phys. Rev. Lett. 75, 4602 (1995).

    Article  Google Scholar 

  9. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. Wineland, Phys. Rev. Lett. 75, 4714 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  10. B. D'Espagnat, Veiled Reality — An Analysis of Present Day Quantum Mechanical Concepts (Addison-Wesley, Reading, 1994).

    Google Scholar 

  11. R. Omnés, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994).

    MATH  Google Scholar 

  12. A. J. Legget, in Quantum Implications, edited by J. de Boer et al., (North Holland, Amsterdam, 1986).

    Google Scholar 

  13. W. H. Zurek, Prog. Theor. Phys. 89, 281 (1993).

    Article  MathSciNet  Google Scholar 

  14. V. B. Braginski and F. Ya. Khalili, Quantum Measurement, (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  15. see also M. B. Mensky, Continuous Quantum Measurements and Path Integrals, Institute of Physics, Publishing Ltd, Techno House, Redcliffe Way, (Bristol and Philadelphia, 1993).

    Google Scholar 

  16. N. Mårtensson, Treat. Mat. Sci. Tech., 27, 65 (1988).

    Google Scholar 

  17. E. J. Brändas, in Dynamics During Spectroscopic Transitions, edited by E. Lippert and J. D. Macomber, p. 148 (Springer Verlag, 1995).

    Google Scholar 

  18. G. Lindblad, Comm. Math. Phys. 48, 119 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. R. Bulsara and L. Gammaitoni, Phys. Today 49, (1996).

    Google Scholar 

  20. E. Schmidt, Math Ann. 63, 433 (1907).

    Article  MathSciNet  Google Scholar 

  21. B. C. Carlson and J. M. Keller, Phys. Rev. 121, 659 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  22. P.-O. Löwdin, Int. J. Quant. Chem. 21, 269 (1982); Isr. J. Chem. 31, 297 (1991).

    Article  Google Scholar 

  23. D. Home and R. Chattopadhyaya, Phys. Rev. Lett. 76, 2836 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  24. C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).

    Article  Google Scholar 

  25. A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).

    Article  Google Scholar 

  26. F. Sasaki, Phys. Rev. 138, B 1338 (1965).

    Google Scholar 

  27. A. Bohm and M. Gadella, Dirac Kets, Gamow Vectors and Gel'fand Triplets, (Springer Verlag, Berlin, 1989).

    Google Scholar 

  28. E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  29. C. van Winter, J. Math. Anal. 47, 633 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  30. B. Simon, Ann. Math. 97, 247 (1973).

    Article  Google Scholar 

  31. F. R. Gantmacher, The theory of matrices. Vol. II, Chelsea Publishing Company, New York (1959)

    MATH  Google Scholar 

  32. H. Baumgärtel, Endlichdimensionale analytische Störungstheorie, (Akademie-Verlag Berlin, 1972)

    MATH  Google Scholar 

  33. H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, (Akademie-Verlag Berlin, 1984); Extended English Version, Series: Advances in Operator Theory, (Birkhauser Verlag, Basel, 1985).

    Google Scholar 

  34. C. E. Reid and E. J. Brändas, Lecture Notes in Physics 325, p. 475 (1989)

    Google Scholar 

  35. see also E. Brändas, in Quantum Science Methods and Structure A Tribute to Per-Olov Löwdin, J.-L. Calais. O. Goscinski, J. Linderberg and Y. Öhrn, Eds. (Plenum, New York), P.381 (1976).

    Google Scholar 

  36. G. G. Emch J. Functional Analysis 19, 1 (1975); Commun. Math. Phys. 49, 191 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Kumičák and E. Brändas, Int. J. Quant. Chem. 46, 391 (1993)

    Article  Google Scholar 

  38. see also C. H. Obcemea and E. J. Brändas, Ann. Phys. 151, 383 (1983).

    Article  MATH  Google Scholar 

  39. C. A. Chatzidimitriou-Dreismann, Adv. Chem. Phys. 80, 201 (1991).

    Article  Google Scholar 

  40. L. J. Dunne, J. Mol. Struct. (Theochem), 341, 101 (1995).

    Article  Google Scholar 

  41. E. J. Brändas, Adv. Chem. Phys. 99, 211 (1997).

    Article  Google Scholar 

  42. I. Prigogine, From Being To Becoming. W. H. Freeman and Company, San Francisco (1980).

    Google Scholar 

  43. G. Nicolis and I. Prigogine, Exploring Complexity. W. H. Freeman and Company, New York (1989).

    Google Scholar 

  44. E. J. Brändas and C. A. Chatzidimitriou-Dreismann, Lecture Notes in Physics 325, p. 485 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arno Bohm Heinz-Dietrich Doebner Piotr Kielanowski

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Brändas, E., Hessmo, B. (1998). Indirect measurements and the mirror theorem: A liouville formulation of quantum mechanics. In: Bohm, A., Doebner, HD., Kielanowski, P. (eds) Irreversibility and Causality Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics, vol 504-504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106793

Download citation

  • DOI: https://doi.org/10.1007/BFb0106793

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64305-0

  • Online ISBN: 978-3-540-69725-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics