Skip to main content

Pharmacological Modulation of the Sigma 1 Receptor and the Treatment of Pain

  • Chapter
  • First Online:
Sigma Receptors: Their Role in Disease and as Therapeutic Targets

Abstract

There is a critical need for new analgesics acting through new mechanisms of action, which could increase the efficacy with respect to existing therapies and reduce their unwanted effects. Current preclinical evidence supports the modulatory role of sigma-1 receptors (σ1R) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists on pains of different etiologies. σ1R is highly expressed in different pain areas of the CNS and the periphery (particularly dorsal root ganglia), and interacts and modulates the functionality of different receptors and ion channels . The antagonism of σ1R leads to decreased amplification of pain signaling within the spinal cord (central sensitization), but recent data also support a role at the periphery. σ1R antagonists have consistently demonstrated efficacy in neuropathic pain , but also in other types of pain including inflammatory, orofacial, visceral, and post-operative pain. Apart from acting alone, when combined with opioids, σ1R antagonists enhance opioid analgesia but not opioid-induced unwanted effects. Interestingly, unlike opioids, σ1R antagonists do not modify normal sensory mechanical and thermal sensitivity thresholds but they exert antihypersensitive effects in sensitizing conditions, enabling the reversal of nociceptive thresholds back to normal values. Accordingly, σ1R antagonists are not strictly analgesics; they are antiallodynic and antihyperalgesic drugs acting when the system is sensitized following prolonged noxious stimulation or persistent abnormal afferent input (e.g., secondary to nerve injury). These are distinctive features allowing σ1R antagonists to exert a modulatory effect specifically in pathophysiological conditions such as chronic pain .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jamieson DG, Moss A, Kennedy M, Jones S, Nenadic G et al (2014) The pain interactome: connecting pain-specific protein interactions. Pain 155:2243–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI et al (2015) A classification of chronic pain for ICD-11. Pain 156:1003–1007

    PubMed  PubMed Central  Google Scholar 

  3. Turk DC, Wilson HD, Cahana A (2011) Treatment of chronic non-cancer pain. Lancet 377:2226–2235

    Article  CAS  PubMed  Google Scholar 

  4. Kissin I (2010) The development of new analgesics over the past 50 years: a lack of real breakthrough drugs. Anesth Analg 110:780–789

    Article  CAS  PubMed  Google Scholar 

  5. Labianca R, Sarzi-Puttini P, Zuccaro SM, Cherubino P, Vellucci R et al (2012) Adverse effects associated with non-opioid and opioid treatment in patients with chronic pain. Clin Drug Investig 32(Suppl 1):53–63

    Article  CAS  Google Scholar 

  6. Almansa C, Vela JM (2014) Selective sigma-1 receptor antagonists for the treatment of pain. Future Med Chem 6:1179–1199

    Article  CAS  PubMed  Google Scholar 

  7. Alonso G, Phan V, Guillemain I, Saunier M, Legrand A et al (2000) Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience 97:155–170

    Article  CAS  PubMed  Google Scholar 

  8. Phan VL, Miyamoto Y, Nabeshima T, Maurice T (2005) Age-related expression of sigma1 receptors and antidepressant efficacy of a selective agonist in the senescence-accelerated (SAM) mouse. J Neurosci Res 79:561–572

    Article  CAS  PubMed  Google Scholar 

  9. Guitart X, Codony X, Monroy X (2004) Sigma receptors: biology and therapeutic potential. Psychopharmacology 174:301–319

    Article  CAS  PubMed  Google Scholar 

  10. Bangaru ML, Weihrauch D, Tang QB, Zoga V, Hogan Q et al (2013) Sigma-1 receptor expression in sensory neurons and the effect of painful peripheral nerve injury. Mol Pain 9:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sanchez-Fernandez C, Montilla-Garcia A, Gonzalez-Cano R, Nieto FR, Romero L et al (2014) Modulation of peripheral mu-opioid analgesia by sigma1 receptors. J Pharmacol Exp Ther 348:32–45

    Article  PubMed  CAS  Google Scholar 

  12. Cendan CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM (2005) Formalin-induced pain is reduced in sigma(1) receptor knockout mice. Eur J Pharmacol 511:73–74

    Article  CAS  PubMed  Google Scholar 

  13. Entrena JM, Cobos EJ, Nieto FR, Cendan CM, Gris G et al (2009) Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain 143:252–261

    Article  CAS  PubMed  Google Scholar 

  14. de la Puente B, Nadal X, Portillo-Salido E, Sanchez-Arroyos R, Ovalle S et al (2009) Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain 145:294–303

    Article  PubMed  CAS  Google Scholar 

  15. Nieto FR, Cendan CM, Sanchez-Fernandez C, Cobos EJ, Entrena JM et al (2012) Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain 13:1107–1121

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez-Cano R, Merlos M, Baeyens JM, Cendan CM (2013) Sigma1 receptors are involved in the visceral pain induced by intracolonic administration of capsaicin in mice. Anesthesiology 118:691–700

    Article  CAS  PubMed  Google Scholar 

  17. Nieto FR, Cendan CM, Canizares FJ, Cubero MA, Vela JM et al (2014) Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain 10:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gris G, Merlos M, Vela JM, Zamanillo D, Portillo-Salido E (2014) S1RA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund’s adjuvant models in mice. Behav Pharmacol 25:226–235

    Article  CAS  PubMed  Google Scholar 

  19. Tejada MA, Montilla-Garcia A, Sanchez-Fernandez C, Entrena JM, Perazzoli G et al (2014) Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology 231:3855–3869

    Article  CAS  PubMed  Google Scholar 

  20. Vela JM, Merlos M, Almansa C (2015) Investigational sigma-1 receptor antagonists for the treatment of pain. Expert Opin Investig Drugs 24:883–896

    Article  CAS  PubMed  Google Scholar 

  21. Chien CC, Pasternak GW (1994) Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther 271:1583–1590

    CAS  PubMed  Google Scholar 

  22. Vidal-Torres A, de la Puente B, Rocasalbas M, Tourino C, Bura SA et al (2013) Sigma-1 receptor antagonism as opioid adjuvant strategy: enhancement of opioid antinociception without increasing adverse effects. Eur J Pharmacol 711:63–72

    Article  CAS  PubMed  Google Scholar 

  23. Sanchez-Fernandez C, Nieto FR, Gonzalez-Cano R, Artacho-Cordon A, Romero L et al (2013) Potentiation of morphine-induced mechanical antinociception by sigma(1) receptor inhibition: role of peripheral sigma(1) receptors. Neuropharmacology 70:348–358

    Article  CAS  PubMed  Google Scholar 

  24. Chien CC, Pasternak GW (1995) Sigma antagonists potentiate opioid analgesia in rats. Neurosci Lett 190:137–139

    Article  CAS  PubMed  Google Scholar 

  25. Kim HW, Roh DH, Yoon SY, Seo HS, Kwon YB et al (2008) Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br J Pharmacol 154:1125–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Romero L, Zamanillo D, Nadal X, Sanchez-Arroyos R, Rivera-Arconada I et al (2012) Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol 166:2289–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chien CC, Pasternak GW (1993) Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid sigma 1 system. Eur J Pharmacol 250:R7–R8

    Article  CAS  PubMed  Google Scholar 

  28. Mei J, Pasternak GW (2002) Sigma1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 300:1070–1074

    Article  CAS  PubMed  Google Scholar 

  29. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164

    Article  CAS  PubMed  Google Scholar 

  30. Liu M, Wood JN (2011) The roles of sodium channels in nociception: implications for mechanisms of neuropathic pain. Pain Med 12(Suppl 3):S93–S99

    Article  PubMed  Google Scholar 

  31. Balasuriya D, Stewart AP, Crottes D, Borgese F, Soriani O et al (2012) The sigma-1 receptor binds to the Nav1.5 voltage-gated Na+ channel with 4-fold symmetry. J Biol Chem 287:37021–37029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johannessen M, Ramachandran S, Riemer L, Ramos-Serrano A, Ruoho AE et al (2009) Voltage-gated sodium channel modulation by sigma-receptors in cardiac myocytes and heterologous systems. Am J Physiol Cell Physiol 296:C1049–C1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johannessen M, Fontanilla D, Mavlyutov T, Ruoho AE, Jackson MB (2011) Antagonist action of progesterone at sigma-receptors in the modulation of voltage-gated sodium channels. Am J Physiol Cell Physiol 300:C328–C337

    Article  CAS  PubMed  Google Scholar 

  34. Zhang H, Katnik C, Cuevas J (2009) Sigma receptor activation inhibits voltage-gated sodium channels in rat intracardiac ganglion neurons. Int J Physiol Pathophysiol Pharmacol 2:1–11

    PubMed  PubMed Central  Google Scholar 

  35. Cheng ZX, Lan DM, Wu PY, Zhu YH, Dong Y et al (2008) Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors. Exp Neurol 210:128–136

    Article  CAS  PubMed  Google Scholar 

  36. Kiss T (2008) Persistent Na-channels: origin and function. A Rev Acta Biol Hung 59(Suppl):1–12

    Article  Google Scholar 

  37. Han C, Estacion M, Huang J, Vasylyev D, Zhao P et al (2015) Human Na(v)1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons. J Neurophysiol 113:3172–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao XF, Yao JJ, He YL, Hu C, Mei YA (2012) Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels. PLoS One 7:e49384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Osmakov DI, Andreev YA, Kozlov SA (2014) Acid-sensing ion channels and their modulators. Biochemistry (Mosc) 79:1528–1545

    Article  CAS  Google Scholar 

  40. Carnally SM, Johannessen M, Henderson RM, Jackson MB, Edwardson JM (2010) Demonstration of a direct interaction between sigma-1 receptors and acid-sensing ion channels. Biophys J 98:1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herrera Y, Katnik C, Rodriguez JD, Hall AA, Willing A et al (2008) Sigma-1 receptor modulation of acid-sensing ion channel a (ASIC1a) and ASIC1a-induced Ca2+ influx in rat cortical neurons. J Pharmacol Exp Ther 327:491–502

    Article  CAS  PubMed  Google Scholar 

  42. Kwon SG, Roh DH, Yoon SY, Choi SR, Choi HS et al (2016) Role of peripheral sigma-1 receptors in ischaemic pain: potential interactions with ASIC and P2X receptors. Eur J Pain 20:594–606

    Article  CAS  PubMed  Google Scholar 

  43. Tsantoulas C, McMahon SB (2014) Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci 37:146–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP et al (2013) Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 152:236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aydar E, Palmer CP, Klyachko VA, Jackson MB (2002) The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 34:399–410

    Article  CAS  PubMed  Google Scholar 

  46. Rasband MN, Park EW, Vanderah TW, Lai J, Porreca F et al (2001) Distinct potassium channels on pain-sensing neurons. Proc Natl Acad Sci U S A 98:13373–13378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martina M, Turcotte ME, Halman S, Bergeron R (2007) The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 578:143–157

    Article  CAS  PubMed  Google Scholar 

  48. Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8:321–329

    Article  CAS  PubMed  Google Scholar 

  49. Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J et al (2005) SK channels and NMDA receptors form a Ca2+−mediated feedback loop in dendritic spines. Nat Neurosci 8:642–649

    Article  CAS  PubMed  Google Scholar 

  50. Lamy C, Scuvee-Moreau J, Dilly S, Liegeois JF, Seutin V (2010) The sigma agonist 1,3-di-o-tolyl-guanidine directly blocks SK channels in dopaminergic neurons and in cell lines. Eur J Pharmacol 641:23–28

    Article  CAS  PubMed  Google Scholar 

  51. Perret D, Luo ZD (2009) Targeting voltage-gated calcium channels for neuropathic pain management. Neurotherapeutics 6:679–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tchedre KT, Huang RQ, Dibas A, Krishnamoorthy RR, Dillon GH et al (2008) Sigma-1 receptor regulation of voltage-gated calcium channels involves a direct interaction. Invest Ophthalmol Vis Sci 49:4993–5002

    Article  PubMed  Google Scholar 

  53. Mueller BH 2nd, Park Y, Daudt DR 3rd, Ma HY, Akopova I et al (2013) Sigma-1 receptor stimulation attenuates calcium influx through activated L-type voltage gated calcium channels in purified retinal ganglion cells. Exp Eye Res 107:21–31

    Article  CAS  PubMed  Google Scholar 

  54. Zhang H, Cuevas J (2002) Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J Neurophysiol 87:2867–2879

    CAS  PubMed  Google Scholar 

  55. Pan B, Guo Y, Kwok WM, Hogan Q, Wu HE (2014) Sigma-1 receptor antagonism restores injury-induced decrease of voltage-gated Ca2+ current in sensory neurons. J Pharmacol Exp Ther 350:290–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Monnet FP, Morin-Surun MP, Leger J, Combettes L (2003) Protein kinase C-dependent potentiation of intracellular calcium influx by sigma1 receptor agonists in rat hippocampal neurons. J Pharmacol Exp Ther 307:705–712

    Article  CAS  PubMed  Google Scholar 

  57. Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB et al (2008) Intrathecal injection of the sigma(1) receptor antagonist BD1047 blocks both mechanical allodynia and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. Anesthesiology 109:879–889

    Article  CAS  PubMed  Google Scholar 

  58. Balasuriya D, Stewart AP, Edwardson JM (2013) The sigma-1 receptor interacts directly with GluN1 but not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci 33:18219–18224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sanchez-Blazquez P, Rodriguez-Munoz M, Herrero-Labrador R, Burgueno J, Zamanillo D et al (2014) The calcium-sensitive Sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: implications in antinociception and psychotic diseases. Int J Neuropsychopharmacol 17:1943–1955

    Article  CAS  PubMed  Google Scholar 

  60. Rodriguez-Munoz M, Sanchez-Blazquez P, Herrero-Labrador R, Martinez-Murillo R, Merlos M et al (2015) The sigma1 receptor engages the redox-regulated HINT1 protein to bring opioid analgesia under NMDA receptor negative control. Antioxid Redox Signal 22:799–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pasternak GW, Kolesnikov YA, Babey AM (1995) Perspectives on the N-methyl-D-aspartate/nitric oxide cascade and opioid tolerance. Neuropsychopharmacology 13:309–313

    Article  CAS  PubMed  Google Scholar 

  62. Garzon J, Rodriguez-Munoz M, Sanchez-Blazquez P (2012) Direct association of Mu-opioid and NMDA glutamate receptors supports their cross-regulation: molecular implications for opioid tolerance. Curr Drug Abuse Rev 5:199–226

    Article  CAS  PubMed  Google Scholar 

  63. Rygh LJ, Tjolsen A, Hole K, Svendsen F (2002) Cellular memory in spinal nociceptive circuitry. Scand J Psychol 43:153–159

    Article  PubMed  Google Scholar 

  64. Sandkuhler J (2000) Learning and memory in pain pathways. Pain 88:113–118

    Article  CAS  PubMed  Google Scholar 

  65. Sanchez-Blazquez P, Rodriguez-Munoz M, Garzon J (2014) The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia. Front Pharmacol 4:169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kim FJ, Kovalyshyn I, Burgman M, Neilan C, Chien CC et al (2010) Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol Pharmacol 77:695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pasternak GW (2014) Opiate pharmacology and relief of pain. J Clin Oncol 32:1655–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Romero-Sandoval EA, Asbill S, Paige CA, Byrd-Glover K (2015) Peripherally restricted cannabinoids for the treatment of pain. Pharmacotherapy 35:917–925

    Article  PubMed  Google Scholar 

  69. Garzon J, Herrero-Labrador R, Rodriguez-Munoz M, Shah R, Vicente-Sanchez A et al (2015) HINT1 protein: a new therapeutic target to enhance opioid antinociception and block mechanical allodynia. Neuropharmacology 89:412–423

    Article  CAS  PubMed  Google Scholar 

  70. Tappe-Theodor A, Constantin CE, Tegeder I, Lechner SG, Langeslag M et al (2012) Galpha(q/11) signaling tonically modulates nociceptor function and contributes to activity-dependent sensitization. Pain 153:184–196

    Article  CAS  PubMed  Google Scholar 

  71. Morin-Surun MP et al (1999) Intracellular sigma1 receptor modulates phospholipase C and protein kinase C activities in the brainstem. Proc Natl Acad Sci USA 96(14):8196–8199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hayashi T, Su TP (2001) Regulating ankyrin dynamics: roles of sigma-1 receptors. Proc Natl Acad Sci U S A 98:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610

    Article  CAS  PubMed  Google Scholar 

  74. Shioda N, Ishikawa K, Tagashira H, Ishizuka T, Yawo H et al (2012) Expression of a truncated form of the endoplasmic reticulum chaperone protein, sigma1 receptor, promotes mitochondrial energy depletion and apoptosis. J Biol Chem 287:23318–23331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hayashi T, Maurice T, Su TP (2000) Ca(2+) signaling via sigma(1)-receptors: novel regulatory mechanism affecting intracellular Ca(2+) concentration. J Pharmacol Exp Ther 293:788–798

    CAS  PubMed  Google Scholar 

  76. Pal A, Hajipour AR, Fontanilla D, Ramachandran S, Chu UB et al (2007) Identification of regions of the sigma-1 receptor ligand binding site using a novel photoprobe. Mol Pharmacol 72:921–933

    Article  CAS  PubMed  Google Scholar 

  77. Mishra AK, Mavlyutov T, Singh DR, Biener G, Yang J et al (2015) The sigma-1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J 466:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gromek KA, Suchy FP, Meddaugh HR, Wrobel RL, LaPointe LM et al (2014) The oligomeric states of the purified sigma-1 receptor are stabilized by ligands. J Biol Chem 289:20333–20344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J et al (1996) Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 93:8072–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kekuda R, Prasad PD, Fei YJ, Leibach FH, Ganapathy V (1996) Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1). Biochem Biophys Res Commun 229:553–558

    Article  CAS  PubMed  Google Scholar 

  81. Diaz JL, Cuberes R, Berrocal J, Contijoch M, Christmann U et al (2012) Synthesis and biological evaluation of the 1-arylpyrazole class of sigma(1) receptor antagonists: identification of 4-{2-[5-methyl-1-(naphthalen-2-yl)-1H-pyrazol-3-yloxy]ethyl}morpholine (S1RA, E-52862). J Med Chem 55:8211–8224

    Article  CAS  PubMed  Google Scholar 

  82. Bura AS, Guegan T, Zamanillo D, Vela JM, Maldonado R (2013) Operant self-administration of a sigma ligand improves nociceptive and emotional manifestations of neuropathic pain. Eur J Pain 17:832–843

    Article  CAS  PubMed  Google Scholar 

  83. Mazo I, Roza C, Zamanillo D, Merlos M, Vela JM et al (2015) Effects of centrally acting analgesics on spinal segmental reflexes and wind-up. Eur J Pain 19:1012–1020

    Article  CAS  PubMed  Google Scholar 

  84. Abadias M, Escriche M, Vaque A, Sust M, Encina G (2013) Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. Br J Clin Pharmacol 75:103–117

    Article  CAS  PubMed  Google Scholar 

  85. Taubel J, Ferber G, Lorch U, Wang D, Sust M et al (2015) Single doses up to 800 mg of E-52862 do not prolong the QTc interval – a retrospective validation by pharmacokinetic-pharmacodynamic modelling of electrocardiography data utilising the effects of a meal on QTc to demonstrate ECG assay sensitivity. PLoS One 10:e0136369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kurz A, Sessler DI (2003) Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs 63:649–671

    Article  CAS  PubMed  Google Scholar 

  87. Reece AS, Hulse GK (2014) Impact of lifetime opioid exposure on arterial stiffness and vascular age: cross-sectional and longitudinal studies in men and women. BMJ Open 4:e004521

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chien CC, Pasternak GW (1995) (−)-Pentazocine analgesia in mice: interactions with a sigma receptor system. Eur J Pharmacol 294:303–308

    Article  CAS  PubMed  Google Scholar 

  89. King M, Pan YX, Mei J, Chang A, Xu J et al (1997) Enhanced kappa-opioid receptor-mediated analgesia by antisense targeting the sigma1 receptor. Eur J Pharmacol 331:R5–R6

    Article  CAS  PubMed  Google Scholar 

  90. Ronsisvalle G, Prezzavento O, Marrazzo A, Vittorio F, Bousquet E et al (2001) Synthesis and binding affinity of cis-(−)- and cis-(+)-N-ethyleneamino-N-nordeoxymetazocine and cis-(−)-N-normetazocine analogues at sigma1, sigma2 and kappa opioid receptors. Eur J Pharm Sci 12:277–284

    Article  CAS  PubMed  Google Scholar 

  91. Prezzavento O, Parenti C, Marrazzo A, Ronsisvalle S, Vittorio F et al (2008) A new sigma ligand, (+/−)-PPCC, antagonizes kappa opioid receptor-mediated antinociceptive effect. Life Sci 82:549–553

    Article  CAS  PubMed  Google Scholar 

  92. Marrazzo A, Parenti C, Scavo V, Ronsisvalle S, Scoto GM et al (2006) In vivo evaluation of (+)-MR200 as a new selective sigma ligand modulating MOP, DOP and KOP supraspinal analgesia. Life Sci 78:2449–2453

    Article  CAS  PubMed  Google Scholar 

  93. Diaz JL, Zamanillo D, Corbera J, Baeyens JM, Maldonado R et al (2009) Selective sigma-1 (sigma1) receptor antagonists: emerging target for the treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem 9:172–183

    Article  CAS  PubMed  Google Scholar 

  94. Pan YX, Mei J, Xu J, Wan BL, Zuckerman A et al (1998) Cloning and characterization of a mouse sigma1 receptor. J Neurochem 70:2279–2285

    Article  CAS  PubMed  Google Scholar 

  95. Mei J, Pasternak GW (2007) Modulation of brainstem opiate analgesia in the rat by sigma 1 receptors: a microinjection study. J Pharmacol Exp Ther 322:1278–1285

    Article  CAS  PubMed  Google Scholar 

  96. Vidal-Torres AF-PB, Carceller A, Vela JM, Merlos M, Zamanillo D (2014) Supraspinal and peripheral but not intrathecal sigma-1 receptor blockade by the selective sigma-1 receptor antagonist E-52862 enhances morphine antinociception. 15th World Congress on Pain. Buenos Aires

    Google Scholar 

  97. Yoon SY, Kang SY, Kim HW, Kim HC, Roh DH (2015) Clonidine reduces nociceptive responses in mouse orofacial formalin model: potentiation by sigma-1 receptor antagonist BD1047 without impaired motor coordination. Biol Pharm Bull 38:1320–1327

    Article  CAS  PubMed  Google Scholar 

  98. Dray A (2008) Neuropathic pain: emerging treatments. Br J Anaesth 101:48–58

    Article  CAS  PubMed  Google Scholar 

  99. Cendan CM, Pujalte JM, Portillo-Salido E, Baeyens JM (2005) Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. Psychopharmacology 182:485–493

    Article  CAS  PubMed  Google Scholar 

  100. Entrena JM, Cobos EJ, Nieto FR, Cendan CM, Baeyens JM et al (2009) Antagonism by haloperidol and its metabolites of mechanical hypersensitivity induced by intraplantar capsaicin in mice: role of sigma-1 receptors. Psychopharmacology 205:21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Son JS, Kwon YB (2010) Sigma-1 receptor antagonist BD1047 reduces allodynia and spinal ERK phosphorylation following chronic compression of dorsal root ganglion in rats. Korean J Physiol Pharmacol 14:359–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ohsawa M, Hayashi SS, Kamei J (2010) Effect of acute topical application of +−pentazocine on the mechanical allodynia in diabetic mice. Eur J Pharmacol 641:49–53

    Article  CAS  PubMed  Google Scholar 

  103. Tomohisa M, Junpei O, Aki M, Masato H, Mika F et al (2015) Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain. Synapse 69:526–532

    Article  CAS  PubMed  Google Scholar 

  104. Moon JY, Roh DH, Yoon SY, Choi SR, Kwon SG et al (2014) sigma1 receptors activate astrocytes via p38 MAPK phosphorylation leading to the development of mechanical allodynia in a mouse model of neuropathic pain. Br J Pharmacol 171:5881–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mardon K, Kassiou M, Donald A (1999) Effects of streptozotocin-induced diabetes on neuronal sigma receptors in the rat brain. Life Sci 65:PL281–PL286

    Article  CAS  Google Scholar 

  106. Gris G, Cobos EJ, Zamanillo D, Portillo-Salido E (2015) Sigma-1 receptor and inflammatory pain. Inflamm Res 64:377–381

    Article  CAS  PubMed  Google Scholar 

  107. Huang J, Zhang X, McNaughton PA (2006) Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol 4:197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Parenti C, Marrazzo A, Arico G, Parenti R, Pasquinucci L et al (2014) The antagonistic effect of the sigma 1 receptor ligand (+)-MR200 on persistent pain induced by inflammation. Inflamm Res 63:231–237

    Article  CAS  PubMed  Google Scholar 

  109. Parenti C, Marrazzo A, Arico G, Cantarella G, Prezzavento O et al (2014) Effects of a selective sigma 1 antagonist compound on inflammatory pain. Inflammation 37:261–266

    Article  CAS  PubMed  Google Scholar 

  110. Garcia-Martinez BA, Jaramillo-Morales OA, Espinosa-Juarez JV, Navarrete-Vazquez G, Melo-Hernandez LA et al (2016) Antinociceptive effects of a new sigma-1 receptor antagonist (N-(2-morpholin-4-yl-ethyl)-2-(1-naphthyloxy)acetamide) in two types of nociception. Eur J Pharmacol 771:10–17

    Article  CAS  PubMed  Google Scholar 

  111. Jeong YC, Son JS, Kwon YB (2015) The spinal antinociceptive mechanism determined by systemic administration of BD1047 in zymosan-induced hyperalgesia in rats. Brain Res Bull 119:93–100

    Article  CAS  PubMed  Google Scholar 

  112. Roh DH, Choi SR, Yoon SY, Kang SY, Moon JY et al (2011) Spinal neuronal NOS activation mediates sigma-1 receptor-induced mechanical and thermal hypersensitivity in mice: involvement of PKC-dependent GluN1 phosphorylation. Br J Pharmacol 163:1707–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McDougall JJ (2011) Peripheral analgesia: Hitting pain where it hurts. Biochim Biophys Acta 1812:459–467

    Article  CAS  PubMed  Google Scholar 

  114. Sawynok J, Liu J (2014) Contributions of peripheral, spinal, and supraspinal actions to analgesia. Eur J Pharmacol 734:114–121

    Article  CAS  PubMed  Google Scholar 

  115. Cervero F, Laird JM (1999) Visceral pain. Lancet 353:2145–2148

    Article  CAS  PubMed  Google Scholar 

  116. Sikandar S, Dickenson AH (2012) Visceral pain: the ins and outs, the ups and downs. Curr Opin Support Palliat Care 6:17–26

    Article  PubMed  PubMed Central  Google Scholar 

  117. Romero-Reyes M, Uyanik JM (2014) Orofacial pain management: current perspectives. J Pain Res 7:99–115

    Article  PubMed  PubMed Central  Google Scholar 

  118. Okeson JP (2008) The classification of orofacial pains. Oral Maxillofac Surg Clin North Am 20:133–144

    Article  PubMed  Google Scholar 

  119. Kwon YB, Jeong YC, Kwon JK, Son JS, Kim KW (2009) The antinociceptive effect of sigma-1 receptor antagonist, BD1047, in a capsaicin induced headache model in rats. Korean J Physiol Pharmacol 13:425–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pyun K, Son JS, Kwon YB (2014) Chronic activation of sigma-1 receptor evokes nociceptive activation of trigeminal nucleus caudalis in rats. Pharmacol Biochem Behav 124:278–283

    Article  CAS  PubMed  Google Scholar 

  121. Benoliel R, Eliav E (2013) Primary headache disorders. Dent Clin N Am 57:513–539

    Article  PubMed  Google Scholar 

  122. Limmroth V, Lee WS, Moskowitz MA (1996) GABAA-receptor-mediated effects of progesterone, its ring-A-reduced metabolites and synthetic neuroactive steroids on neurogenic oedema in the rat meninges. Br J Pharmacol 117:99–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Herzog AG (2007) Neuroactive properties of reproductive steroids. Headache 47(Suppl 2):S68–S78

    Article  PubMed  Google Scholar 

  124. Kwon SG, Yoon SY, Roh DH, Choi SR, Choi HS et al (2016) Peripheral neurosteroids enhance P2X receptor-induced mechanical allodynia via a sigma-1 receptor-mediated mechanism. Brain Res Bull 121:227–232

    Article  CAS  PubMed  Google Scholar 

  125. Roh DH, Yoon SY (2014) Sigma-1 receptor antagonist, BD1047 reduces nociceptive responses and phosphorylation of p38 MAPK in mice orofacial formalin model. Biol Pharm Bull 37:145–151

    Article  CAS  PubMed  Google Scholar 

  126. Gris G, Portillo-Salido E, Vela JM, Zamanillo D, Merlos M (2014) Role of the sigma-1 receptor in post-operative pain in mice. 15th World Congress on Pain. Buenos Aires

    Google Scholar 

Download references

Declaration of Interest

The authors are full-time employees of ESTEVE. The authors have no other relevant affiliation or financial involvement, have received no payment in preparation of this manuscript or have any conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Vela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Merlos, M., Burgueño, J., Portillo-Salido, E., Plata-Salamán, C.R., Vela, J.M. (2017). Pharmacological Modulation of the Sigma 1 Receptor and the Treatment of Pain. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, vol 964. Springer, Cham. https://doi.org/10.1007/978-3-319-50174-1_8

Download citation

Publish with us

Policies and ethics