Skip to main content

Sea-Level Change and Flood Risks at Estonian Coastal Zone

  • Chapter
  • First Online:
Coastline Changes of the Baltic Sea from South to East

Abstract

This paper reviews Estonian relative sea level, land uplift and coastal floods data and provides sea-level scenarios and risk assessment of coastal flooding in urban areas for the twenty-first century. Considering the present post-glacial land uplift rates of Estonian coastal areas and the global ocean level rise projections, the long-existing trend of relative sea-level lowering may very probably be replaced by a relative sea-level rising trend during the twenty-first century. By the end of the twenty-first century we project the relative sea level to be c. 20 to 40 cm or c. 40 to 60 cm higher in the case of the International Panel for Climate Change Representative Concentration Pathways (RCP) 4.5 or RCP 8.5 scenario, respectively. The sea-level rise together with the increased storm frequency and decreased winter ice cover period will very probably increase the extent of floods during the twenty-first century. A significant coastal flooding risk affects four cities, Pärnu, Kuressaare, Haapsalu and Tallinn and eight smaller towns. The largest coastal flooding in Estonia is recorded in Pärnu, with the highest sea level 275 cm in 2005. Calculations show that due to the impact of predicted climate change and in the case of certain weather conditions, coastal floods in Pärnu may affect areas up to 400 cm above the present sea level by the end of the twenty-first century. The scenarious of future flood limits are needed for sustainable planning of the coastal zone and for development of rescue strategies.There are already several land use and urban planning instruments and laws for climate adaptation, such as environmental impact assessment, risk assessment and restriction zones for construction in certain buffer and flood areas. Flooding risk measures consist of risk mapping and a national emergency plan. However, further integration of climate issues into existing laws, strategies and land use plans is essential to have a targeted approach in reducing the vulnerability of populated areas and strengthening the adaptive capacity of the urban system against climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ågren J, Svensson R (2007) Postglacial land uplift model and system definition for the New Swedish Height System RH 2000. Reports in Geodesy and Geographical Information Systems. LMV-Rapport 2007:4. Lantmäteriet, Gävle, Sweden

    Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF 2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473

    Article  Google Scholar 

  • Andren T, Björck S, Andren E, Conley LZ, Anjar J (2011) The development of the Baltic Sea Basin during the last 130 ka. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea Basin, Central and eastern European development studies. Springer, Berlin, pp 75–97

    Chapter  Google Scholar 

  • Averkiev S, Klevannyy KA (2010) A case study of the impact of cyclonic trajectories on sea level extremes in the Gulf of Finland. Cont Shelf Res 30:707–714

    Article  Google Scholar 

  • BACC II Author Team (ed) (2015) Second assessment of climate change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham, p 501

    Google Scholar 

  • Bennike O, Jensen JB (2011) Postglacial, relative shore-level hange in Lillebælt, Denmark. Geol Surv Den Greenl Bull 23:37–40

    Google Scholar 

  • Berglund M (2004) Holocene shore displacement and chronology in Ångermanland, eastern Sweden, the Scandianavian glacio-isostatic uplift center. Boreas 33:48–60

    Article  Google Scholar 

  • Blomqvist E, Renqvist H (1914) Vattenståndsiakttagelser vid Finlands kuster. Meddelanden från Hydrografiska Byrån vid Överstyrelsen för Väg- och Vattenbyggnaderna i Finland, p 429. (Also in German: Wasserstandsbeobachtungen an den Küsten Finlands. Fennia, 37(1): 433)

    Google Scholar 

  • EC (2007) Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks, OJ L288, 6.11.2007, p 28

    Google Scholar 

  • Ekman M (1996) A consistent map of the post glacial uplift of Fennoscandia. Terra Nova 8:158–165

    Article  Google Scholar 

  • Ekman M (2007) A secular change in storm activity over the Baltic Sea detected through analysis of sea level data. Small Publ Hist Geophys 16

    Google Scholar 

  • Eronen M, Glükert G, Hatakka L, van de Plassche O, van der Plicht J, Rantala P (2001) Rates of Holocene isostatic uplift and relative sea-level lowering of the Baltic in SW Finland based on studies of isolation contacts. Boreas 30:17–30

    Article  Google Scholar 

  • Estonian Land Board (2015) http://geoportaal.maaamet.ee/eng/Services/Public-WMS-service-p346.html. Last accessed 30 June 2015

  • Estonian Rescue Board (2013) Hädaolukorra riskianalüüs: üleujutus tiheasustusalal (Emergency risk assessment: flood on high-density population area). http://paasteamet.ee/dotAsset/3d49a9ef-e601-4acc-8df8-9d35fbb8653a.pdf. (12.06.15)

  • Fischer A (2011) Stone age on the continental shelf: an eroding resource. In: Benjamin J, Bonsall C, Pickard C, Fischer A (eds) Submerged prehistory. Oxbow Books, Oakville, pp 298–310

    Google Scholar 

  • Harff J, Meyer M (2011) Coastlines of the Baltic Sea – zones of competition between geological processes and a changing climate: examples from the Southern Baltic. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea Basin, Central and eastern European development studies. Springer, Berlin, pp 149–164

    Chapter  Google Scholar 

  • HM Government (2005) Emergency preparedness – guidance on part I of the Civil Contingencies Act 2004, its associated regulations and non-statutory arrangements. https://www.gov.uk/government/publications/emergency-preparedness. (12.06.15)

  • Hünicke B, Zorita E, Soomere T, Madsen KS, Johansson M, Suursaar Ü (2015) Recent change – sea level and wind waves. In: BACC II Author Team (ed) Second assessment of climate change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham

    Google Scholar 

  • Hupfer P, Harff J, Sterr H, Stigge HJ (2003) Die Wasserstände an der Ostseeküste. Entwicklung-Sturmfluten-Klimawandel. Sonderheft. Die Küste 66

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge p 1535

    Google Scholar 

  • Jaagus J, Suursaar Ü (2013) Long-term storminess and sea level variations on the Estonian coast of the Baltic Sea in relation to large-scale atmospheric circulation. Est J Earth Sci 62(2):73–92

    Article  Google Scholar 

  • Jevrejeva S, Rüdja A, Mäkinen J (2002) Postglacial rebound in Fennoscandia: new results from Estonian tide gauges. In: Proceedings of the conferece gravity, geoid and geodynamics 2000, Banf, Alberta, Canada, 31 July–5 August 2000

    Google Scholar 

  • Johansson JM, Davis JL, Scherneck HG, Milne GA, Vermeer M, Mitrovica JX, Bennett RA, Jonsson B, Elgered G, Elósegui P, Koivula H, Poutanen M, Rönnäng BO, Shapiro II (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. J Geophys Res SolidEarth 107(B8):ETG 3–1–ETG 3–27

    Google Scholar 

  • Kall T, Oja T, Tänavsuu K (2014) Postglacial land uplift in Estonia based on four precise levelings. Tectonophysics 610:25–38

    Article  Google Scholar 

  • Kierulf HP, Steffen H, Simpson MJR, Lidberg M, Wu P, Wang H (2014) A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models. J Geophys Res Solid Earth 119(8):6613–6629

    Article  Google Scholar 

  • Kurennoy D, Ryabchuk D (2011) Wind wave conditions in Neva Bay. J Coast Res Spec Issue 64:0749–0208

    Google Scholar 

  • Lambeck K, Smither C, Ekman M (1998) Tests of glacial rebound models for Fennoscandinavia based on instrumented sea- and lake-level records. Geophys J Int 135:375–378

    Article  Google Scholar 

  • Lampe R, Naumann M, Meyer H, Janke W, Ziekur R (2011) Holocene evolution of the Southern Baltic Sea coast and interplay of sea-level variation, isostasy, accommodation and sediment supply. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea Basin, Central and eastern European development studies. Springer, Berlin, pp 233–251

    Chapter  Google Scholar 

  • Lidberg M, Johansson JM, Schernecka HG, Milne GA (2010) Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J Geodyn 50(1):8–18

    Article  Google Scholar 

  • Linden M, Möller P, Björck S, Sandgren P (2006) Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas 35:1–22

    Article  Google Scholar 

  • Lowe JA, Woodworth PL, Knutson T, McDonald RE, McInnes KL, Woth K, von Storch H, Wolf J, Swail V, Bernier NB, Gulev S, Horsburgh KJ, Unnikrishnan AS, Hunter JR, Weisse R (2010) Past and future changes in extreme sea levels and waves. In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Understanding sea-level rise and variability. Wiley-Blackwell, Oxford

    Google Scholar 

  • Lübke H, Schmolcke U, Tauber F (2011) Mesolithic hunter-fishers in a changing world: a case study of submerged sites on the Jäckelberg. Wismar Bay, Northeastern Germany. In: Benjamin J, Bonsall C, Pickard C, Fischer A. (eds) Submerged prehistory, 146–151

    Google Scholar 

  • Meier HEM (2006) Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27(1):39–68

    Article  Google Scholar 

  • Meier HEM, Höglund A, Döscher R, Andersson H, Löptien U, Kjellström E (2011) Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia 53:193–227

    Article  Google Scholar 

  • Meyssignac B, Becker M, Llovel W, Cazenave A (2012) An assessment of two-dimensional past sea level reconstructions over 1950–2009 based on tide-gauge data and different input sea level grids. Surv Geophys 33:945–972

    Article  Google Scholar 

  • Miettinen A (2004) Holocene seal-level changes and glacio-isostasy in the Gulf of Finland, Baltic Sea. Quat Int 120:91–104

    Article  Google Scholar 

  • Milne GA, Davis JL, Mitrovica JX, Scherneck HG, Johansson JM, Vermeer M, Koivula H (2001) Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291:2381–2385

    Article  Google Scholar 

  • Ministry of the Environment (2011) Üleujutusohuga seotud riskide esialgse hinnangu aruanne (Report of the initial assessment of risks connected with flood hazard). http://www.envir.ee/sites/default/files/yleujutusohuesialgnehinnang.pdf. (12.06.15)

  • Ministry of the Environment (2014) Üleujutusohupiirkonna ja üleujutusohuga seotud riskipiirkonna kaardid. (Maps of the flood hazard zones and the risk zones connected with flood hazard). http://www.envir.ee/sites/default/files/kokkuvote.pdf. (12.06.15)

  • Ministry of the Interior (2013) 2013. aasta hädaolukordade riskianalüüside kokkuvõte. (The 2013 summary of the risk assessments for emergencies). https://www.siseministeerium.ee/sites/default/files/dokumendid/riskianalyys_kokkuvote_2013.pdf. (12.06.15)

  • Parliament of Estonia (2000) Emergency preparedness act. State Gazette I, 95, 613, 2000

    Google Scholar 

  • Parliament of Estonia (2009) Emergency act. State Gazette I, 39, 262, 2009

    Google Scholar 

  • Post P, Kõuts T (2014) Characteristics of cyclones causing extreme sea levels in the northern Baltic Sea. Oceanologia 56(2):241–258

    Article  Google Scholar 

  • Randjärv J (1968) Baltikumi regiooni nüüdisaegsete vertikaalliikumiste iseloom ja kiirused. Maakoore nüüdisaegsed vertikaalliikumised 3, NSVL TA, Geofüüsika komitee, Maakoore vertikaalliikumiste komisjon. Moskva 1968, 200–210 (in Russian)

    Google Scholar 

  • Rosentau A, Meyer M, Harff J, Dietrich R, Richter A (2007) Relative sea level change in the Baltic Sea since the Littorina transgression. Z Geol Wiss 35(1/2):3–16

    Google Scholar 

  • Rosentau A, Harff J, Oja T, Meyer M (2012) Postglacial rebound and relative sea level changes in the Baltic Sea since the Litorina transgression. Baltica 25(2):113–120

    Article  Google Scholar 

  • Rosentau A, Muru M, Kriiska A, Subetto D, Vassiljev J, Hang T, Gerasimov D, Nordqvist K, Ludikova A, Lõugas L, Raig H, Kihno K, Aunap R, Letyka N (2013) Stone age settlement and holocene shore displacement in the Narva-Luga Klint Bay area, eastern Gulf of Finland. Boreas 42(4):912–931

    Google Scholar 

  • Saarse L, Vassiljev J, Miidel A (2003) Simulation of the Baltic Sea shorelines in Estonia and neighbouring areas. J Coast Res 19:261–268

    Google Scholar 

  • Samuelsson M, Stigebrandt A (1996) Main characteristiscs of the long-term sea level variability in the Baltic Sea. Tellus 48A:672–683

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge/New York, pp 109–230

    Google Scholar 

  • Sepp M (2009) Changes in frequency of Baltic Sea cyclones and their relationships with NAO and climate in Estonia. Boreal Environ Res 14:143–151

    Google Scholar 

  • Sepp M, Post P, Jaagus J (2005) Long-term changes in the frequency of cyclones and their trajectories in Central and Northern Europe. Nord Hydrol 36(4–5):297–309

    Google Scholar 

  • Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sandberg Sørensen L, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183–1189

    Article  Google Scholar 

  • Soomere T (2005) Märatsev meri: kui vesi peale tungib. Horisont 3:32–38 (in Estonian)

    Google Scholar 

  • Statistics Estonia (2015) https://estat.stat.ee/StatistikaKaart/VKR. Last accessed 30 June 2015

  • Steffen H, Kaufmann G, Wu P (2006) Three-dimensional finite-element modeling of the glacial isostatic adjustment in Fennoscandia. Earth Planet Sci Lett 250(1–2):358–375

    Article  Google Scholar 

  • Suursaar Ü (2013) Locally calibrated wave hindcasts in the Estonian coastal sea in 1966–2011. Est J Earth Sci 62(1):42–56

    Article  Google Scholar 

  • Suursaar Ü, Sooäär J (2007) Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus 59(2):249–260

    Article  Google Scholar 

  • Suursaar Ü, Kullas T, Otsmann M (2002) A model study of sea level variations in the Gulf of Riga and the Väinameri sea. Cont Self Res 22:2001–2019

    Article  Google Scholar 

  • Suursaar Ü, Jaagus J, Kullas T (2006a) Past and future changes in sea level near the Estonian coast in relation to changes in wind climate. Boreal Environ Res 11:123–142

    Google Scholar 

  • Suursaar Ü, Kullas T, Otsmann M, Saaremäe I, Kuik J, Merilain M (2006b) Cyclone Gudrun in january 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters. Boreal Environ Res 11(2):143–159

    Google Scholar 

  • Suursaar Ü, Jaagus J, Kullas T, Tõnisson H (2011) Estimation of sea level rise and storm surge risks along the coast of Estonia, Baltic Sea – a tool for coastal management. In: Littoral 2010 – adapting to global change at the coast: leadership, innovation, and investment London, UK, 21–23 September 2010

    Google Scholar 

  • Suursaar Ü, Jaagus J, Tõnisson H (2015) How to quantify long-term changes in coastal sea storminess? Estuar Coast Shelf Sci 156:31–41

    Article  Google Scholar 

  • Sztobryn M, Weidig B, Stanislawcyk I, Holfort J, Kowalska B, Mykita M, Kanska A, Krysztofik K, Perlet I (2009) Negative surges in the southern Baltic Sea (western and central parts). Berichte des Bundesamtes für Seeschifffaahrt und Hydrographie Nr. 45

    Google Scholar 

  • Tammepuu A, Sepp K (2013) Emergency risk assessment: the Estonian approach. J Risk Res 16(2):169–193

    Article  Google Scholar 

  • Tarand A, Jaagus J, Kallis A (2013) Eesti kliima minevikus ja tänapäeval. Tartu Ülikooli Kirjastus, Tartu

    Google Scholar 

  • Tõnisson H, Orviku K, Jaagus J, Suursaar Ü, Kont A, Rivis R (2008) Coastal damages on Saaremaa Island, Estonia, caused by the extreme storm and flooding on January 9, 2005. J Coast Res 24(3):602–614

    Article  Google Scholar 

  • Uscinowicz S (2003) Relative sea-level changes, glacio-isostatic rebound and shoreline displacement in the Southern Baltic. Polish Geological Institute, Special Papers 10:1–80

    Google Scholar 

  • Uscinowicz S (2006) A relative sea-level curve for polish Southern Baltic Sea. Quat Int 145-146:86–105

    Article  Google Scholar 

  • Vallner L, Sildvee H, Torim A (1988) Recent crustal movements in Estonia. J Geodyn 9:215–223

    Article  Google Scholar 

  • Van der Wal WA, Barnhoorn P, Stocchi S, Gradmann P, Wu M, Drury B, Vermeersen B (2013) Glacial isostatic adjustment model with composite 3D earth rheology for Fennoscandia. Geophys J Int 192(3):1109–1115

    Article  Google Scholar 

  • Veski S, Heinsalu A, Klassen V, Kriiska A, Lõugas L, Poska A, Saluäär U (2005) Early Holocene coastal settlement and paleoenvironment on the shore of the Baltic Sea at Pärnu, southwestern Estonia. Quat Int 130:75–78

    Article  Google Scholar 

  • Vestøl O (2006) Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation. J Geod 80:248–258

    Article  Google Scholar 

  • Watson CS, White NJ, Church JA, King MA, Burgette RJ, Legresy B (2015) Unabated global mean sea-level rise over the satellite altimeter era. Nat Clim Chang 3(6):565

    Article  Google Scholar 

  • Wolski T, Wisniewski B, Giza A, Kowalewska-Kalkowska H, Boman H, Grabbi-Kaiv S, Hammarklint T, Holfort J, Lydeikaite Z (2014) Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 56(2):259–290

    Article  Google Scholar 

  • Yu SY, Berglund BE, Sandgren P, Lambeck K (2007) Evidence for rapid sea-level rise 7600 yr ago. Geology 35:891–894

    Article  Google Scholar 

  • Zhao S, Lambeck K, Lidberg M (2012) Lithosphere thickness and mantle viscosity inverted from GPS-derived deformation rates in Fennoscandia. Geophys J Int 190(1):278–292

    Article  Google Scholar 

  • Zhelnin G (1958) Maakoore kerkimine Eestis (Uplift of the Earth’s crust in Estonia). Eesti Loodus 5 pp 269–274 [in Estonian]

    Google Scholar 

  • Zhelnin G (1966) On the recent movements of the Earth’s surface in the Estonian SSR. Ann Acad Sci Fenn Ser A III Geol-Geograph 90:489–493

    Google Scholar 

Download references

Acknowledgements

We thank Daria Ryabchuk for her comments and suggestions for improving the manuscript. This multidisciplinary study was supported primarily by the EEA Grants project “Assessment of climate change impacts and elaboration of adaptation instruments in the field of planning, land use, health and rescue management (KATI)”. The research was also financed by Estonian Research Council research grants PUT456, ETF9011, IUT20-34, IUT2-16 and IUT2–17. Paper has been written in the framework of IGCP project 639 “Sea Level Change from Minutes to Millennia”, supported by UNESCO and IUGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alar Rosentau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rosentau, A. et al. (2017). Sea-Level Change and Flood Risks at Estonian Coastal Zone. In: Harff, J., Furmańczyk, K., von Storch, H. (eds) Coastline Changes of the Baltic Sea from South to East. Coastal Research Library, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-49894-2_16

Download citation

Publish with us

Policies and ethics