Skip to main content

Phenolic Compounds in Plants: Implications for Bioenergy

  • Chapter
  • First Online:
Advances of Basic Science for Second Generation Bioethanol from Sugarcane

Abstract

Lignin is a copolymer of three main hydroxycinnamyl alcohols identified as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units. The highly condensed matrix (core lignin) may also be associated with low-molecular phenolics as hydroxycinnamic acids mainly p-coumaric, caffeic, ferulic, and sinapic acids dubbed noncore lignins. Lignin confers hydrophobicity and mechanical and chemical strength for tissues, providing a barrier against the attack of pathogens and herbivores. The content and composition of lignin are strongly affected by biotic and abiotic stresses. Besides core and noncore lignin, free phenolic compounds perform a relevant activity in response to plant stresses. The toxicity of allelochemicals is partially due to their ability to bind and inhibit enzyme activities. The presence of lignin imposes a physical barrier to the action of enzymes in saccharification of plant cell wall polysaccharides to the production of cellulosic ethanol. The presence of endogenous phenolic compounds as well as treatments to degrade lignin, in turn, release phenolic compounds that adsorb and inhibit cellulases, xylanases, and accessory enzymes. This chapter provides basic information on phenolic compounds of interest to support the sustainable use of alga and plant biomasses as raw materials for the production of biofuels discussing the main approaches ongoing to reduce their negative impact in biomass saccharification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RAC (2012) Glycosyl transferase in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. PNAS 109(3):989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sanchez ME, Benke PI, Canlas PE, Cao P, Brewer S, Lin F, Smith WL, Zhang X, Keasling JD, Jentoff RE, Foster SB, Zhou J, Ziebell A, An G, Scheller HV, Ronald PC (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol 161(4):1615–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baziramakenga R, Leroux GD, Simard RR (1995) Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J Chem Ecol 21:1271–1285

    Article  CAS  PubMed  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15(3–4):583–620

    Article  CAS  PubMed  Google Scholar 

  • Buanafina M (2009) Feruloylation in grasses: current and future perspectives. Mol Plant 2:861–872

    Article  CAS  Google Scholar 

  • Buckeridge MS, De Souza AP (2014) Breaking the “glycomic code” of cell wall polysaccharides may improve second-generation bioenergy production from biomass. Bioenergy Res 7:1065–1073

    Article  CAS  Google Scholar 

  • Buckeridge M, dos Santos WD, Souza A (2010) Routes for cellulosic ethanol. In: Sugarcane bioethanol, R&D for productivity and sustainability. C. LAB, Blucher

    Google Scholar 

  • Burton RA, Fincher GB (2012) Current challenges in cell wall biology in the cereals and grasses. Front Plant Sci 3:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpita N (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  PubMed  Google Scholar 

  • Carpita N, Gibeaut D (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Carpita N, McCann M (2000) The cell wall. In: Buchanan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127(2):551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Dixon R (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  CAS  PubMed  Google Scholar 

  • D’Auria JC (2006) Acyltransferase in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  PubMed  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids: a gold mine for metabolic engineering. Trends Plant Sci 4(10):394–400

    Article  CAS  PubMed  Google Scholar 

  • dos Santos WD, Ferrarese MLL, Nakamura CV, Mourão KSM, Mangolin CA, Ferrarese-Filho O (2008a) Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. J Chem Ecol 34:120–1241

    Article  Google Scholar 

  • dos Santos WD, Ferrarese MLL, Ferrarese-Filho O (2008b) Ferulic acid: an allelochemical troublemaker. Funct Plant Sci Biotechnol 2:47–55

    Google Scholar 

  • dos Santos WD, Marchiosi R, Vilar FCM, Lima RB, Soares AR, Parizotto AV, Oliveira DM, Ferrarese-Filho O (2014) Polyvalent lignin: recent approaches in determination and applications. In: Lu F (ed) Structural analysis, applications in biomaterials and ecological significance, Biochemistry research trends. Nova, New York, 419 p

    Google Scholar 

  • Einhellig FA (2004) Mode of allelochemical action of phenolic. In: Macias FA et al (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, pp 217–238

    Google Scholar 

  • Eriksson T, Karlsson J, Tjerneld F (2002) A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei. Appl Biochem Biotechnol 101(1):41–60

    Article  CAS  PubMed  Google Scholar 

  • Ferro AP (2014) Parede Celular de cana-de-açúcar: enzimas da via de fenilpropenoides e a biossíntese de lignina. Tese de Doutorado em Ciências Biológicas (Biologia Celular)—Universidade Estadual de Maringá

    Google Scholar 

  • Fry S (1986) Cross-Linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  • Harris P, Trethewey J (2010) The distribution of ester-linked ferulic acid in the cell walls of angiosperms. Phytochem Rev 9:19–33

    Article  CAS  Google Scholar 

  • Hatfield R, Ralph J, Grabber J (1999) Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric 79:403–407

    Article  CAS  Google Scholar 

  • Huang R, Su R, Qi W, He Z (2011) Bioconversion of lignocellulose into bioethanol process intensification and mechanism research. Bioenergy Res 4:225–245

    Article  Google Scholar 

  • Ita AG (2012) Efeito do ácido metilenodioxicinâmico sobre a recalcitrância do bagaço à digestão enzimática de diferentes cultivares de cana-de-açúcar. Tese de Mestrado em Agronomia. Universidade Estadual de Maringá

    Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Phillips R (2010) Putative seedling ferulate ester (sfe) maize mutant: morphology, biomass yield, and stover cell wall composition and rumen degradability. Crop Sci 50:403–418

    Article  Google Scholar 

  • Ko JK, Ximenes E, Kim Y, Ladisch MR (2014) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 112(3):447–456

    Article  PubMed  Google Scholar 

  • Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph SA, Zakai UI, Morreel K, Boerjan W, Ralph J (2015) Tricin, a flavonoid monomer in monocot lignification. Plant Physiol 167:1284–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Weng J-K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  CAS  PubMed  Google Scholar 

  • Lima RB, Salvador VH, dos Santos WD, Bubna GA, Finger-Teixeira A, Marchiosi R, Ferrarese MLL, Ferrarese-Filho O (2013) Enhanced lignin monomer production caused by cinnamic acid and its hydroxylated derivatives inhibits soybean root growth. PLoS One 8:e80542

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindsay S, Fry S (2008) Control of diferulate formation in dicotyledonous and gramineous cell-suspension cultures. Planta 227:439–452

    Article  CAS  PubMed  Google Scholar 

  • Mastrangelo LI, Lenucci MS, Piro G, Dalessandro G (2009) Evidence for intra and extra-protoplasmic feruloylation and cross-linking in wheat seedling roots. Planta 229:343–355

    Article  CAS  PubMed  Google Scholar 

  • Mitchell R, Dupree P, Shewry P (2007) Novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari HBC, Pellny TK, Freeman J, Shewry PR, Mitchell RAC (2013) Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon. Front Plant Sci 4(50):1–10

    Google Scholar 

  • Moreira-Vilar FC, Siqueira-Soares RC, Finger-Teixeira A, Oliveira DM, Ferro AP, Rocha GJ, Ferrarese MLL, dos Santos WD, Ferrarese-Filho O (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason Thioglycolic acid methods. PLoS One 9(10):1–7

    Article  Google Scholar 

  • Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol 37:190–200

    Article  CAS  PubMed  Google Scholar 

  • Moura JCMS, Bonine CAV, De Oliveira FVJ, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DM, Finger-Teixeira A, Mota TR, Salvador VH, Moreira-Vilar FC, Molinari HBC, Mitchell RAC, Marchiosi R, Ferrarese-Filho O, dos Santos WD (2014) Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol J 13:1224–1232

    Article  PubMed  Google Scholar 

  • Pan X (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobaased Mater Bioenergy 2:25–32

    Article  Google Scholar 

  • Parizotto AV (2012) Cafeato o-metiltransferase de milho (Zea mays L.): Estrutura da enzima, prospecção de inibidores e recalcitrância da parede celular. Tese de Doutorado em Ciências Biológicas (Biologia Celular). Universidade Estadual de Maringá

    Google Scholar 

  • Pedersen J, Vogel K, Funnell D (2005) Impact of Reduced Lignin on Plant Fitness. Crop Sci 45:812

    Article  CAS  Google Scholar 

  • Piston F, Uauy C, Fu L, Langston J, Labavitch J, Dubcovsky J (2010) Down-regulation of four putative arabinoxylan feruloyl transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls. Planta 231:677–691

    Article  CAS  PubMed  Google Scholar 

  • Poovaiah CR, Nageswara-Rao M, Soneji JR, Baxter HL, Stewart CNJR (2014) Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Plant Biotechnol J 12(9):1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Li WC, Liu L, Zhu JQ, Li X, Li BZ, Yuan YJ (2016) Inhibition of lignin-derivated phenolic compounds to cellulose. Biotechnol Biofuels 9:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Renger A, Steinhart H (2000) Ferulic acid dehydrodimers as structural elements in cereal dietary fiber. Eur Food Res Technol 211:422–428

    Article  CAS  Google Scholar 

  • Salvador VH, Lima RB, dos Santos WD, Soares AR, Böhm PAF, Marchiosi R, Ferrase MLL, Ferrarese-Filho O (2013) Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth. PLoS One 8:e69105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart JJ, Akiyama T, Chapple CC, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol 150:621–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  CAS  PubMed  Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem Article ID 762412, 10 p

    Google Scholar 

  • Tobimatsu Y, Takano T, Kamitakahara H, Nakatsubo F (2008) Studies on the dehydrogenative polymerizations (DHPs) of monolignol β-glycosides: Part 4. Horseradish peroxidase-catalyzed copolymerization of isoconiferin and isosyringin. Holzforschung 62:495–500

    CAS  Google Scholar 

  • Tobimatsu Y, Elumalai S, Grabber JH, Davidson CL, Pan X, Ralph J (2012) Hydroxycinnamate conjugates as potential monolignol replacements: in vitro lignification and cell wall studies with rosmarinic acid. ChemSusChem 5:676–686

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T (2009) The cinnamate/monolignol pathway. Phytochem Rev 9:1–17

    Article  Google Scholar 

  • Vanholme R, Ralph J, Akiyama T, Lu F, Pazo JR, Kim H, Christensen JH, Van Reusel B, Storme V, De Rycke R et al (2010) Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis. Plant J 64:885–897

    Article  CAS  PubMed  Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307

    Article  CAS  PubMed  Google Scholar 

  • Vohra RM, Shirsot CK, Dhawan S, Gupta KG (1980) Effect of lignin and some of its components on the production and activity of cellulase(s) by Trichoderma reesei. Biotechnol Bioeng 22:1497–1500

    Article  CAS  Google Scholar 

  • Weng J-K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  CAS  PubMed  Google Scholar 

  • Weng J-K, Akiyama T, Bonawitz ND, Li X, Ralph J et al (2010) Convergent evolution of syringyl lignin biosynthesis via distinct pathways in the lycophyte Selaginella and flowering plants. Plant Cell 22:1033–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkerson CG, Mansfield SD, Lu F, Withers S, Park J-Y, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90–93

    Article  CAS  PubMed  Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2010) Inhibition of cellulases by phenols. Enzyme Microb Technol 46:170–176

    Article  CAS  Google Scholar 

  • Yun L, Benkun Q, Yinhua W (2014) Inhibitory effect of vanillin on cellulose activity in hydrolysis of cellulosic biomass. Bioresour Technol 167:324–330

    Article  Google Scholar 

  • Zobiole L, dos Santos WD, Bonini E, Ferrarese-Filho O, Kremer R, Oliveira-Júnior R (2010) Lignin: from nature to industry. In: Paterson R (ed) Lignin: properties and applications in biotechnology and bioenergy. Hauppauge, New York, pp 419–436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanderley Dantas dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

de Oliveira, D.M. et al. (2017). Phenolic Compounds in Plants: Implications for Bioenergy. In: Buckeridge, M., De Souza, A. (eds) Advances of Basic Science for Second Generation Bioethanol from Sugarcane. Springer, Cham. https://doi.org/10.1007/978-3-319-49826-3_4

Download citation

Publish with us

Policies and ethics