Skip to main content

Environmental Sustainability Aspects of Second Generation Ethanol Production from Sugarcane

  • Chapter
  • First Online:
Advances of Basic Science for Second Generation Bioethanol from Sugarcane

Abstract

Sugarcane-derived ethanol from Brazil has a high output to input energy ratio and high greenhouse gas savings compared to fossil fuels. Current ethanol production is based on first generation (1G) technology, which ferments the sugars extracted from sugarcane stalks. Cellulosic ethanol (2G) can be produced from what is currently considered agricultural and agro-industrial residues (straw and bagasse), and also from dedicated high biomass-producing crops. 2G ethanol provides an opportunity to intensify production, obtaining more energy per unit of area cropped and potentially reducing the environmental footprint. Straw removal from the field has more negative than positive consequences for the environment and the production system, but the effects need to be evaluated at the site and regional levels. The use of bagasse as feedstock should be evaluated using life cycle assessment methods to account for its alternative uses as raw material and in cogeneration. Energy cane, a vigorous and rustic crop selected for total biomass production rather than for sucrose, is a promising feedstock for 2G ethanol. The presence of rhizomes, a deep root system, and intensive tillering contribute to erosion control, crop longevity, and soil carbon sequestration. There is a need for more long-term experiments focusing on soil quality, nutrient cycling, greenhouse gas emissions, and crop production using innovative techniques such as stable isotope labeling and intensive soil flux measurements with automatic chambers to understand the impact of removing crop residues for bioenergy production and of using high-biomass dedicated crops. Process-based models are useful in sustainability assessments of 2G sugarcane ethanol production since they take into account site and regional variability in soil biogeochemistry, climate parameters, management practices, plant genetic traits, and the interactions of these factors. The integration of models and geographic information systems allows for regional assessments of the potential impacts of bioenergy production, contributing to the identification and promotion of sustainable pathways for cellulosic ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander AG (1985) The energy cane alternative. Elsevier, Amsterdam

    Google Scholar 

  • Buckeridge MS, De Souza AP, Arundale RA, Anderson-Teixeira KJ, DeLucia E (2012) Ethanol from sugarcane in Brazil: a ‘midway’ strategy for increasing ethanol production while maximizing environmental benefits. GCB Bioenergy 4:119–126

    Article  CAS  Google Scholar 

  • Cançado JED, Saldiva PHN, Pereira LAA, Lara LBLS, Artaxo P, Martinelli LA, Arbex MA, Zanobett A, Braga ALF (2006) The impact of sugar cane–burning emissions on the respiratory system of children and the elderly. Environ Health Perspect 114: 725–729

    Google Scholar 

  • Cantarella H, Cerri CEP, Carvalho JLN, Magalhaes PSG (2013) Editorial: How much sugarcane trash should be left on the soil. Scientia Agricola 70:1–2

    Article  Google Scholar 

  • Carmo JB, Filoso S, Zotelli LC, Sousa Neto E, Pitombo LM, Duarte Neto PJ, Vargas VP, Andrade CA, Gava GJC, Rossetto RR, Cantarella H, Elias Neto A, Martinelli LA (2013) Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. Glob Change Biol Bioenergy 5:267–280

    Article  Google Scholar 

  • Carvalho JLN, Otto R, Franco HCJ, Trivelin PCO (2013) Input of sugarcane post-harvest residues into the soil. Sci Agric 70:336–344

    Article  CAS  Google Scholar 

  • Carvalho-Netto OV, Bressiani JA, Soriano HL, Fiori CS, Santos JM, Barbosa GVS, Xavier MA, Landell MGA, Pereira GAG (2014) The potential of the energy cane as the main biomass crop for the cellulosic industry. Chem Biol Technol Agric 1(1):20. doi:10.1186/s40538-014-0020-2

    Article  Google Scholar 

  • Cerri CEP, Galdos MV, Carvalho JLN, Feigl BJ, Cerri CC (2013) Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view. Sci Agric 70:361–368

    Article  CAS  Google Scholar 

  • Davis SC, Parton WJ, Grosso SJ, Keough C, Marx E, Adler PR, DeLucia EH (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10(2):69–74. doi:10.1890/110003

    Article  Google Scholar 

  • Dias MOS, Junqueira TL, Cavalett O, Pavanello LG, Cunha MP, Jesus CDF, Maciel R, Bonomi A (2013) Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Appl Energy 109: 72–78

    Google Scholar 

  • Dinardo-Miranda LL, Fracasso JV (2013) Sugarcane straw and the populations of pests and nematodes. Sci Agric 70:369–374

    Article  Google Scholar 

  • Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB, Lanigan GJ, Mander Ãœ, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. Glob Change Biol Bioenergy 4(4):372–391

    Article  CAS  Google Scholar 

  • Dondini M, Groenigen KJV, Galdo ID, Jones MB (2009) Carbon sequestration under Miscanthus: a study of 13C distribution in soil aggregates. Glob Change Biol Bioenergy 1:321–330

    Article  CAS  Google Scholar 

  • Duval BD, Anderson-Teixeira KJ, Davis SC, Keogh C, Long SP, Parton WJ, DeLucia EH (2013) Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop. PLoS One 8(8). doi:10.1371/journal.pone.0072019

  • Figueiredo EB, Jr LS (2011) Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil. Agr Ecosyst Environ 141:77–85

    Article  Google Scholar 

  • Figueiredo EB, Panosso AR, Reicosky D, Jr LS (2014) Short-term CO2-C emissions from soil prior to sugarcane (Saccharum spp.) replanting in southern Brazi. Glob Change Biol Bioenergy 7(2):316–327. doi:10.1111/gcbb.12151

    Article  Google Scholar 

  • Franco HCJ, Pimenta MTB, Carvalho JLN, Magalhaes PSG, Rossell CEV, Braunbeck OA, Vitti AC, Kolln OT, Neto JR (2013) Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Sci Agric 70:305–312

    Article  Google Scholar 

  • Galdos MV, Cerri CC, Cerri CEP (2009a) Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153:347–352

    Article  CAS  Google Scholar 

  • Galdos MV, Cerri CC, Cerri CEP, Paustian K, Antwerpen R (2009b) Simulation of soil carbon dynamics under sugarcane with the CENTURY model. Soil Sci Soc Am J 73:802–811

    Article  CAS  Google Scholar 

  • Galdos MV, Cerri CC, Cerri CEP, Paustian K, Antwerpen R (2010) Simulation of sugarcane residue decomposition and aboveground growth. Plant Soil 326:243–259

    Article  CAS  Google Scholar 

  • Galdos MV, Cavalett O, Seabra JEA, Nogueira LAH, Bonomi A (2013) Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Appl Energy 104:576–582

    Article  CAS  Google Scholar 

  • Graham MH, Haynes RJ, Meyer JH (2002a) Changes in soil chemistry and aggregate stability induced by fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Eur J Soil Sci 53:589–598

    Article  Google Scholar 

  • Graham MH, Haynes RJ, Meyer JH (2002b) Soil organic matter content and quality: effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biol Biochem 34:93–102

    Article  CAS  Google Scholar 

  • Grosso SJ, Parton WJ, Keough CA, Reyes-Fox M (2011) Special features of the DayCent modeling package. In: Ahuja LR, Ma L (eds) Methods of introducing system models into agricultural research. American Society of Agronomy, Madison

    Google Scholar 

  • Hassuani SJ, Leal MRLV, Macedo IC (2005) Biomass power generation: sugar cane bagasse and trash, 1st edn. PNUD—Programa das Nações Unidas para o Desenvolvimento e CTC—Centro de Tecnologia Canavieira, Piracicaba

    Google Scholar 

  • Hastings A, Clifton-Brown J, Wattenbach M, Mitchell CP, Smith P (2009) The Future energy potential of miscanthus in Europe. GCB Bioenergy 1:180–196

    Article  Google Scholar 

  • Horta Nogueira LA, Leal RLV (2012) Sugarcane bioethanol and bioelectricity. In: Poppe MK, Cortez LAB (eds) Sustainability of sugarcane bioenergy. CGEE—Centro de Gestão e Estudos e Estratégicos, Brasilia, pp 113–150

    Google Scholar 

  • Humpenöder F, Schaldach R, Cikovani Y, Schebek L (2013) Effects of land-use change on the carbon balance of 1st generation biofuels: an analysis for the European Union combining spatial modeling and LCA. Biomass Bioenergy 56:166–178

    Article  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B Biol Sci 363:815–830

    Article  CAS  Google Scholar 

  • Lal R (2013) Soil carbon management and climate change. Cardiol Manage 4:439–462

    CAS  Google Scholar 

  • Leal RLV, Galdos MV, Scarpare FV, Seabra JEA, Walter A, Oliveira COF (2013) Sugarcane straw availability, quality, recovery and energy use: a literature review. Biomass Bioenergy 53:11–19

    Article  Google Scholar 

  • Lee JA, Gill TE (2015) Multiple causes of wind erosion in the Dust Bowl. Aeolian Res 19:15–36

    Article  Google Scholar 

  • Li R, Merchant JW (2013) Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA. Sci Total Environ 447:32–45

    Article  CAS  PubMed  Google Scholar 

  • Luca EF, Feller C, Cerri CC, arthes BB, Chaplot V, Campos DC, Manechini C (2008) Evaluation of physical properties and soil carbon and nitrogen stocks as affected by burning or green trash management of sugarcane. Rev Bras Ci Solo 32:789–800

    Article  Google Scholar 

  • Lugato E, Jones A (2014) Modelling soil organic carbon changes under different maize cropping scenarios for cellulosic ethanol in Europe. Bioenergy Res 8:537. doi:10.1007/s12155-014-9529-2

    Article  Google Scholar 

  • Marin FR, Thorburn PJ, Costa LG, Otto R (2014) Simulating long-term effects of trash management on sugarcane yield for Brazilian croppint systems. Sugar Tech 16:164–173

    Article  CAS  Google Scholar 

  • Masters MD, Black CK, Kantola IB, Woli KP, Voigt T, David MB, DeLucia EH (2016) Soil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, Miscanthus x giganteus, and prairie. Agric Ecosyst Environ 216:51–60

    Article  CAS  Google Scholar 

  • Matsuoka S, Kennedy AJ, Gustavo E, Santos D, Tomazela AL, Rubio LCS (2014) Energy Cane: its concept, development, characteristics, and prospects. Adv Bot 2014

    Google Scholar 

  • Miyake S, Renouf M, Peterson A, McAlpine C, Smith C (2012) Land-use and environmental pressures resulting from current and future bioenergy crop expansion: A review. J Rural Stud 28: 650-658

    Google Scholar 

  • Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sustain Energy Rev 44:888–903

    Article  CAS  Google Scholar 

  • Muth DJ, McCorkle DS, Koch JB, Bryden KM (2012) Modeling sustainable agricultural residue removal at the subfield scale. Agron J 104(4):970

    Article  Google Scholar 

  • Odell RT (1982) The Morrow plots: a century of learning. Bulletin, Agricultural Experiment Station, University of Illinois at Urbana-Champaign

    Google Scholar 

  • Oliveira BG, Carvalho JLN, Cerri CEP, Cerri CC, Feigl BJ (2013) Soil greenhouse gas fluxes from vinasse application in Brazilian sugarcane areas. Geoderma 200–201:77–84

    Article  Google Scholar 

  • Otto R, Franco HCJ, Faroni CE, Vitti AC, Trivelin PCO (2009) Fitomassa de raízes e da parte aérea da cana-de-açúcar relacionada à adubação nitrogenada de plantio. Pesq Agrop Brasileira 44:398–405

    Article  Google Scholar 

  • Paredes DS, Lessa ACR, Selenobaldo ACS, Boddey RM, Urquiaga S, Alves BJR (2014) Nitrous oxide emission and ammonia volatilization induced by vinasse and N fertilizer application in a sugarcane crop at Rio de Janeiro, Brazil. Nutr Cycl Agroecosyst 98:41–55

    Article  Google Scholar 

  • Paustian K, Collins HP, Paul EA (1997) Management controls on soil carbon. In Paul EA, Paustian K, Elliott ET, Cole CV (Ed.) Soil organic matter in temperate agroecosystems: long-term experiments in North America. Boca Raton: CRC press. p.15-49

    Google Scholar 

  • Pinheiro EFM, Lima E, Ceddia MB, Urquiaga S, Alves BJR, Boddey RM (2010) Impact of pre-harvest burning versus trash conservation on soil carbon and nitrogen stocks on a sugarcane plantation in the Brazilian Atlantic forest region. Plant Soil 333:71–80

    Article  Google Scholar 

  • Ratnavathi CV, Kalyana Chakravarthy S, Komala VV, Chavan UD, Patil JV (2011) Sweet Sorgum as feedstock for biofuel production: a review. Sugar Tech 13(4):399–407

    Article  CAS  Google Scholar 

  • Resende AS, Xavier RP, Oliveira OC, Urquiaga S, Alves BJR, Boddey RM (2006) Long-term effects of pre-harvest burning and nitrogen and vinasse applications on yield of sugar cane and soil carbon and nitrogen stocks on a plantation in Pernambuco, NE Brazil. Plant Soil 281:339–351

    Article  CAS  Google Scholar 

  • Robertson F (2003) Sugarcane trash management: consequences for soil carbon and nitrogen – Final Report to the CRC for Sustainable Sugar Production of the project Nutrient Cycling in Relation to Trash Management. Townville: CRC for Sustainable Sugar Production. 39p.

    Google Scholar 

  • Robertson FA, Thorburn PJ (2007) Management of sugarcane harvest residues: consequences for soil carbon and nitrogen. Aust J Soil Res 45:13–23

    Article  CAS  Google Scholar 

  • Rossetto R, Dias FLF, Landell MGA, Cantarella H, Tavares S, Vitti AC, Perecin D (2010) N and K fertilisation of sugarcane ratoons harvested without burning. Proc Int Soc Sugar Cane Technol 27:1–8

    Google Scholar 

  • Sheehan J, den AA, Paustian K, illian KK, Brenner J, Walsh M, Nelson R (2003) Energy and environmental aspects of using corn stover for fuel ethanol. J Ind Ecol 7(3–4):117–146

    Article  CAS  Google Scholar 

  • Silva GRV, Souza ZMD, Martins Filho MV, Barbosa RS, Souza GS (2012) Soil, water and nutrient losses by interrill erosion from green cane cultivation. Rev Bras Ci Solo 36:963–970

    Article  Google Scholar 

  • Silver WL, Neff J, McGroddy M, Veldkamp Ed, Keller M, Cosme R (2000) Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem. Ecosystems 3: 193-209

    Google Scholar 

  • Siqueira Neto M, Galdos MV, Feigl BJ, Cerri CEP, Cerri CC (2015) Direct N2O emission factors for synthetic n-fertilizer and organic residues applied on sugarcane for bioethanol production in central-southern brazil. Glob Change Biol Bioenergy 8(2):269–280

    Article  Google Scholar 

  • Smith JU, Gottschalk P, Bellarby J, Chapman S, Lilly A, Towers W, Bell J, Coleman K, Nayak DR, Richards MI, Hillier J, Flynn HC, Wattenbach M, Aitkenhead M, Yeluripurti JB, Farmer J, Milne R, Thomson A, Evans C, Whitmore AP, Falloon P, Smith P (2010) Estimating changes in national soil carbon stocks using ECOSSE—a new model that includes upland organic soils. Part I. Model description and uncertainty in national scale simulations of Scotland. Climate Res 45:179–192

    Article  Google Scholar 

  • Sordi G, Mane c (2013) Utilization of trash: a view from the agronomic and industrial perspective. Sci Agric 70(3–4) Opinion

    Google Scholar 

  • Souza AP, Arundale RA, Dohleman FG, Long SP, Buckeridge MS (2013) Will the exceptional productivity of Miscanthus x giganteus increase further under rising atmospheric CO2? Agric For Meteorol 171/172:82–92

    Article  Google Scholar 

  • Signor D, Pissioni LLM, Cerri CEP (2014) Emissões de gases de efeito estufa pela deposição de palha de cana-de-açúcar sobre o solo. Bragantia. doi:10.1590/brag.2014.019

    Google Scholar 

  • Thorburn PJ, Meier EA, Collins K, Robertson FA (2012) Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil Tillage Res 120:99–111

    Article  Google Scholar 

  • Trivelin PCO, Franco HCJ, Otto R, Ferreira DA, Vitti AC, Fortes C, Faroni CE, Oliveira ECA, Cantarella H (2013) Impact of sugarcane trash on fertilizer requirements for São Paulo, Brazil. Sci Agric 70:345–352

    Article  CAS  Google Scholar 

  • UNICA (2015) http://www.unica.com.br/noticia/6551584920310621254/sao-paulo-fecha-safra-2013-por-cento2F2014-com-colheita-mecanizada-em-83-por-cento-dos-canaviais/. Accessed 23 Mar 2015

  • Vargas VP, Cantarella H, Martins AA, Soares JR, Carmo JB, Andrade CA (2014) Sugarcane crop residue increases N2O and CO2 emissions under high soil moisture conditions. Sugar Tech 16:174–179

    Article  CAS  Google Scholar 

  • Viator RP, Johnson RM, Grimm CC, Richard EP Jr (2006) Allelophatic, autotoxic, and hormetic effects of postharvest sugarcane residue. Agron J 98:1526–1531

    Article  Google Scholar 

  • Vitti AC, Franco HCJ, Trivelin PCO, Ferreira DA, Otto R, Fortes C, Faroni CE (2011) Nitrogênio proveniente da adubação nitrogenada e de resíduos culturais na nutrição da cana-planta. Pesq Agrop Brasileira 46:287–293

    Article  Google Scholar 

  • Wisniewski C, Holtz GP (1997) Decomposição da palhada e liberação de nitrogênio e fosforo numa rotação aveia-soja sob plantio direto. Pesq Agrop Brasileira 32:1191–1197

    Google Scholar 

  • Zatta A, Clifton-Brown J, Robson P, Hastings A, Monti A (2013) Land use change from C3 grassland to C4 Miscanthus: effects on soil carbon content and estimated mitigation benefit after six years. Glob Change Biol Bioenergy 6:360–370

    Article  Google Scholar 

  • Zeri M, Anderson-Teixeira K, Hickman G, Masters M, DeLucia E, Bernacchi CJ (2011) Carbon exchange by establishing biofuel crops in Central Illinois. Agr Ecosyst Environ 144:319–329

    Article  CAS  Google Scholar 

  • Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43: 1169–1179

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Dr. Sizuo Matsuoka and Dr. José Bressiani for the support with information on energy cane. This work was supported by grant 2012/06933-6 from the São Paulo Research Foundation (FAPESP) and the Brazil Partnering Award of the Biotechnology and Biological Science Research Council (BBSCR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Galdos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Galdos, M.V., Cantarella, H., Hastings, A., Hillier, J., Smith, P. (2017). Environmental Sustainability Aspects of Second Generation Ethanol Production from Sugarcane. In: Buckeridge, M., De Souza, A. (eds) Advances of Basic Science for Second Generation Bioethanol from Sugarcane. Springer, Cham. https://doi.org/10.1007/978-3-319-49826-3_10

Download citation

Publish with us

Policies and ethics