Bone Health in Pediatric Inflammatory Bowel Disease

  • Dale LeeEmail author
  • Edisio Semeao


Children and adolescents with inflammatory bowel disease have multiple risk factors for impaired bone development, including poor growth, delayed maturation, malnutrition, decreased weight-bearing activity, chronic inflammation, genetic susceptibility, and immunosuppressive therapies, such as glucocorticoids. The impact can be immediate, such as fragility fractures in childhood or adolescence, or delayed, due to suboptimal peak bone mass accrual. Throughout childhood and adolescence, bone mineral accrual results in ethnic-, gender-, maturation-, and site-specific increases in bone dimensions and density. During the critical 2-year interval surrounding the time of peak height velocity, approximately 25% of skeletal mass is laid down and 90% of peak bone mass is established by 18 years of age. Dual energy x-ray absorptiometry (DXA) scans are widely accepted as a quantitative measurement technique for assessing skeletal status, and in children are expressed relative to age or body size as Z-scores. A three-dimensional structural analysis of trabecular architecture and cortical bone dimensions can be obtained by quantitative computed tomography. Children with newly diagnosed inflammatory bowel disease have deficits in bone mineral density, and longitudinal studies have demonstrated increased bone biomarkers and improvements in bone mineral density over time. Currently, the prevention of bone disease is best accomplished by controlling inflammation, providing adequate calcium and vitamin D supplementation, and encouraging physical activity. Prospective trials of therapeutic agents need to be performed to assess efficacy and safety in the developing skeleton.


DXA Bone health Pediatric inflammatory bowel disease 


  1. 1.
    Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14:1672–9.PubMedCrossRefGoogle Scholar
  2. 2.
    NIH. Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement. 2000;17:1–36.Google Scholar
  3. 3.
    Semeao EJ, Stallings VA, Peck SN, Piccoli DA. Vertebral compression fractures in pediatric patients with Crohn’s disease. Gastroenterology. 1997;112:1710–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Lucarelli S, Borrelli O, Paganelli M, et al. Vertebral fractures and increased sensitivity to corticosteroids in a child with ulcerative colitis: successful use of pamidronate. J Pediatr Gastroenterol Nutr. 2006;43:533–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Thearle M, Horlick M, Bilezikian JP, et al. Osteoporosis: an unusual presentation of childhood Crohn's disease. J Clin Endocrinol Metab. 2000;85:2122–6.PubMedGoogle Scholar
  6. 6.
    Sylvester FA. Cracking the risk of fractures in Crohn disease. J Pediatr Gastroenterol Nutr. 2004;38:113–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Kappelman MD, Galanko JA, Porter CQ, Sandler RS. Risk of diagnosed fractures in children with inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17:1125–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Burnham JM, Shults J, Semeao E, et al. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19:1961–8.CrossRefGoogle Scholar
  9. 9.
    Garnero P, Darte C, Delmas PD. A model to monitor the efficacy of alendronate treatment in women with osteoporosis using a biochemical marker of bone turnover. Bone. 1999;24:603–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Prestwood KM, Pilbeam CC, Burleson JA, et al. The short-term effects of conjugated estrogen on bone turnover in older women. J Clin Endocrinol Metab. 1994;79:366–71.PubMedGoogle Scholar
  11. 11.
    Rudge S, Hailwood S, Horne A, Lucas J, Wu F, Cundy T. Effects of once-weekly oral alendronate on bone in children on glucocorticoid treatment. Rheumatology (Oxford). 2005;44:813–8.CrossRefGoogle Scholar
  12. 12.
    Baron R. General principles of bone biology. In: Favus M, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 1–8.Google Scholar
  13. 13.
    Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med. 1991;325:1597–600.PubMedCrossRefGoogle Scholar
  14. 14.
    Gilsanz V, Kovanlikaya A, Costin G, Roe TF, Sayre J, Kaufman F. Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab. 1997;82:1603–7.PubMedGoogle Scholar
  15. 15.
    Gilsanz V, Gibbens DT, Roe TF, et al. Vertebral bone density in children: effect of puberty. Radiology. 1988;166:847–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Han ZH, Palnitkar S, Rao DS, Nelson D, Parfitt AM. Effect of ethnicity and age or menopause on the structure and geometry of iliac bone. J Bone Miner Res. 1996;11:1967–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359:1841–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Burr DB, Turner CH. Biomechanics of bone. In: Flavus MJ, editor. Primer on the Metabolic bone diseases and disorders of mineral metabolism. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 58–64.Google Scholar
  19. 19.
    Duan Y, Beck TJ, Wang XF, Seeman E. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003;18:1766–74.PubMedCrossRefGoogle Scholar
  20. 20.
    Duan Y, Turner CH, Kim BT, Seeman E. Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res. 2001;16:2267–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Khosla S, Melton 3rd LJ, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL. Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA. 2003;290:1479–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Garnero P, Hausherr E, Chapuy MC, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996;11:1531–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Black DM, Bilezikian JP, Ensrud KE, et al. One year of alendronate after one year of parathyroid hormone (1-84) for osteoporosis. N Engl J Med. 2005;353:555–65.PubMedCrossRefGoogle Scholar
  24. 24.
    Schonau E, Rauch F. Biochemical markers of bone metabolism. In: Glorieux FH, editor. Pediatric bone: biology and diseases. San Diego: Academic Press; 2003. p. 339–57.CrossRefGoogle Scholar
  25. 25.
    Szulc P, Seeman E, Delmas PD. Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int. 2000;11:281–94.PubMedCrossRefGoogle Scholar
  26. 26.
    Gokhale R, Favus MJ, Karrison T, Sutton MM, Rich B, Kirschner BS. Bone mineral density assessment in children with inflammatory bowel disease. Gastroenterology. 1998;114:902–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Fries W, Dinca M, Luisetto G, Peccolo F, Bottega F, Martin A. Calcaneal ultrasound bone densitometry in inflammatory bowel disease – a comparison with double x-ray densitometry of the lumbar spine. Am J Gastroenterol. 1998;93:2339–44.PubMedGoogle Scholar
  28. 28.
    Pollak RD, Karmeli F, Eliakim R, Ackerman Z, Tabb K, Rachmilewitz D. Femoral neck osteopenia in patients with inflammatory bowel disease. Am J Gastroenterol. 1998;93:1483–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Bischoff SC, Herrmann A, Goke M, Manns MP, von zur Muhlen A, Brabant G. Altered bone metabolism in inflammatory bowel disease. Am J Gastroenterol. 1997;92:1157–63.PubMedGoogle Scholar
  30. 30.
    Hyams JS, Wyzga N, Kreutzer DL, Justinich CJ, Gronowicz GA. Alterations in bone metabolism in children with inflammatory bowel disease: an in vitro study. J Pediatr Gastroenterol Nutr. 1997;24:289–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Semeao EJ, Jawad AF, Zemel BS, Neiswender KM, Piccoli DA, Stallings VA. Bone mineral density in children and young adults with Crohn’s disease. Inflamm Bowel Dis. 1999;5:161–6.PubMedCrossRefGoogle Scholar
  32. 32.
    van Staa TP, Cooper C, Brusse LS, Leufkens H, Javaid MK, Arden NK. Inflammatory bowel disease and the risk of fracture. Gastroenterology. 2003;125:1591–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Klaus J, Armbrecht G, Steinkamp M, et al. High prevalence of osteoporotic vertebral fractures in patients with Crohn’s disease. Gut. 2002;51:654–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Vestergaard P, Krogh K, Rejnmark L, Laurberg S, Mosekilde L. Fracture risk is increased in Crohn’s disease, but not in ulcerative colitis. Gut. 2000;46:176–81.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bernstein CN, Blanchard JF, Leslie W, Wajda A, Yu BN. The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med. 2000;133:795–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Loftus Jr EV, Crowson CS, Sandborn WJ, Tremaine WJ, O’Fallon WM, Melton 3rd LJ. Long-term fracture risk in patients with Crohn’s disease: a population-based study in Olmsted County, Minnesota. Gastroenterology. 2002;123:468–75.PubMedCrossRefGoogle Scholar
  37. 37.
    Szulc P, Chapuy MC, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest. 1993;91:1769–74.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kleinman RE, Baldassano RN, Caplan A, et al. Nutrition support for pediatric patients with inflammatory bowel disease: a clinical report of the North American Society for Pediatric Gastroenterology, Hepatology And Nutrition. J Pediatr Gastroenterol Nutr. 2004;39:15–27.PubMedCrossRefGoogle Scholar
  39. 39.
    von Scheven E, Gordon CM, Wypij D, Wertz M, Gallagher KT, Bachrach L. Variable deficits of bone mineral despite chronic glucocorticoid therapy in pediatric patients with inflammatory diseases: a Glaser Pediatric Research Network study. J Pediatr Endocrinol Metab. 2006;19:821–30.Google Scholar
  40. 40.
    Pappa HM, Gordon CM, Saslowsky TM, et al. Vitamin D status in children and young adults with inflammatory bowel disease. Pediatrics. 2006;118:1950–61.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sentongo TA, Semaeo EJ, Stettler N, Piccoli DA, Stallings VA, Zemel BS. Vitamin D status in children, adolescents, and young adults with Crohn disease. Am J Clin Nutr. 2002;76:1077–81.PubMedGoogle Scholar
  42. 42.
    Pappa HM, Grand RJ, Gordon CM. Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and disease. Inflamm Bowel Dis. 2006;12:1162–74.PubMedCrossRefGoogle Scholar
  43. 43.
    Augustine MV, Leonard MB, Thayu M, et al. Changes in vitamin D-related mineral metabolism after induction with anti-tumor necrosis factor-alpha therapy in Crohn's disease. J Clin Endocrinol Metab. 2014;99:E991–8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Parfitt AM. The two faces of growth: benefits and risks to bone integrity. Osteoporos Int. 1994;4:382–98.PubMedCrossRefGoogle Scholar
  45. 45.
    Janz KF. Validation of the CSA accelerometer for assessing children’s physical activity. Med Sci Sports Exerc. 1994;26:369–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Bass S, Pearce G, Bradney M, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13:500–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Bass SL, Saxon L, Daly RM, et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17:2274–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Bass S, Pearce G, Young N, Seeman E. Bone mass during growth: the effects of exercise. Exercise and mineral accrual. Acta Univ Carol Med. 1994;40:3–6.Google Scholar
  49. 49.
    Lloyd T, Petit MA, Lin HM, Beck TJ. Lifestyle factors and the development of bone mass and bone strength in young women. J Pediatr. 2004;144:776–82.PubMedGoogle Scholar
  50. 50.
    Lloyd T, Chinchilli VM, Johnson-Rollings N, Kieselhorst K, Eggli DF, Marcus R. Adult female hip bone density reflects teenage sports-exercise patterns but not teenage calcium intake. Pediatrics. 2000;106:40–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Frost HM, Schonau E. The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab. 2000;13:571–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17:363–72.PubMedCrossRefGoogle Scholar
  53. 53.
    Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res. 2003;18:885–92.PubMedCrossRefGoogle Scholar
  54. 54.
    Harpavat M, Greenspan SL, O’Brien C, Chang CC, Bowen A, Keljo DJ. Altered bone mass in children at diagnosis of Crohn disease: a pilot study. J Pediatr Gastroenterol Nutr. 2005;40:295–300.PubMedCrossRefGoogle Scholar
  55. 55.
    Werkstetter KJ, Ullrich J, Schatz SB, Prell C, Koletzko B, Koletzko S. Lean body mass, physical activity and quality of life in paediatric patients with inflammatory bowel disease and in healthy controls. J Crohns Colitis. 2012;6:665–73.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee DY, Wetzsteon RJ, Zemel BS, et al. Muscle torque relative to cross-sectional area and the functional muscle-bone unit in children and adolescents with chronic disease. J Bone Miner Res Off J Am Soc Bone Miner Res. 2015;30:575–83.CrossRefGoogle Scholar
  57. 57.
    Burnham JM, Shults J, Petit MA, et al. Alterations in proximal femur geometry in children treated with glucocorticoids for Crohn disease or nephrotic syndrome: impact of the underlying disease. J Bone Miner Res. 2007;22:551–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Dubner SE, Shults J, Baldassano RN, et al. Longitudinal assessment of bone density and structure in an incident cohort of children with Crohn’s disease. Gastroenterology. 2009;136:123–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Canalis E, Bilezikian JP, Angeli A, Giustina A. Perspectives on glucocorticoid-induced osteoporosis. Bone. 2004;34:593–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Pereira RC, Delany AM, Canalis E. Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: correlation with CCAAT-enhancer binding protein expression. Bone. 2002;30:685–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Delany AM, Gabbitas BY, Canalis E. Cortisol downregulates osteoblast alpha 1 (I) procollagen mRNA by transcriptional and posttranscriptional mechanisms. J Cell Biochem. 1995;57:488–94.PubMedCrossRefGoogle Scholar
  63. 63.
    Giustina A, Bussi AR, Jacobello C, Wehrenberg WB. Effects of recombinant human growth hormone (GH) on bone and intermediary metabolism in patients receiving chronic glucocorticoid treatment with suppressed endogenous GH response to GH-releasing hormone. J Clin Endocrinol Metab. 1995;80:122–9.PubMedGoogle Scholar
  64. 64.
    Kwan Tat S, Padrines M, Theoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15:49–60.PubMedCrossRefGoogle Scholar
  65. 65.
    Dempster DW, Moonga BS, Stein LS, Horbert WR, Antakly T. Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol. 1997;154:397–406.PubMedCrossRefGoogle Scholar
  66. 66.
    Ikeda S, Morishita Y, Tsutsumi H, et al. Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs. Bone. 2003;33:779–87.PubMedCrossRefGoogle Scholar
  67. 67.
    Ortoft G, Andreassen TT, Oxlund H. Growth hormone increases cortical and cancellous bone mass in young growing rats with glucocorticoid-induced osteopenia. J Bone Miner Res. 1999;14:710–21.PubMedCrossRefGoogle Scholar
  68. 68.
    Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29.PubMedCrossRefGoogle Scholar
  69. 69.
    Gilbert L, He X, Farmer P, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 2000;141:3956–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee SE, Chung WJ, Kwak HB, et al. Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem. 2001;276:49343–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Kong YY, Feige U, Sarosi I, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Walsh MC, Choi Y. Biology of the TRANCE axis. Cytokine Growth Factor Rev. 2003;14:251–63.PubMedCrossRefGoogle Scholar
  73. 73.
    Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32:1–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Gilbert L, He X, Farmer P, et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem. 2002;277:2695–701.PubMedCrossRefGoogle Scholar
  75. 75.
    Radeff JM, Nagy Z, Stern PH. Involvement of PKC-beta in PTH, TNF-alpha, and IL-1 beta effects on IL-6 promoter in osteoblastic cells and on PTH-stimulated bone resorption. Exp Cell Res. 2001;268:179–88.PubMedCrossRefGoogle Scholar
  76. 76.
    Baim S, Wilson CR, Lewiecki EM, Luckey MM, Downs Jr RW, Lentle BC. Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. J Clin Densitom Off J Int Soc Clin Densitom. 2005;8:371–8.CrossRefGoogle Scholar
  77. 77.
    WHO. The WHO Study Group: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Geneva: World Health Organization; 1994.Google Scholar
  78. 78.
    Rauch F, Plotkin H, DiMeglio L, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2007 Pediatric Official Positions. J Clin Densitom Off J Int Soc Clin Densitom. 2008;11:22–8.CrossRefGoogle Scholar
  79. 79.
    Faulkner RA, Davison KS, Bailey DA, Mirwald RL, Baxter-Jones AD. Size-corrected BMD decreases during peak linear growth: implications for fracture incidence during adolescence. J Bone Miner Res. 2006;21:1864–70.PubMedCrossRefGoogle Scholar
  80. 80.
    Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accidental fractures. Am J Dis Child. 1984;138:569–70.PubMedGoogle Scholar
  81. 81.
    Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13:143–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139:509–15.PubMedCrossRefGoogle Scholar
  83. 83.
    Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000;15:2011–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Ma D, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab. 2003;88:1486–91.PubMedCrossRefGoogle Scholar
  85. 85.
    Ma DQ, Jones G. Clinical risk factors but not bone density are associated with prevalent fractures in prepubertal children. J Paediatr Child Health. 2002;38:497–500.PubMedCrossRefGoogle Scholar
  86. 86.
    Cook SD, Harding AF, Morgan EL, et al. Association of bone mineral density and pediatric fractures. J Pediatr Orthop. 1987;7:424–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001;16:1337–42.PubMedCrossRefGoogle Scholar
  88. 88.
    Ma D, Jones G. Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study. J Bone Miner Res. 2003;18:1970–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21:1489–95.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Cole JH, Scerpella TA, van der Meulen MC. Fan-beam densitometry of the growing skeleton: are we measuring what we think we are? J Clin Densitom. 2005;8:57–64.PubMedCrossRefGoogle Scholar
  91. 91.
    McKay HA, Petit MA, Bailey DA, Wallace WM, Schutz RW, Khan KM. Analysis of proximal femur DXA scans in growing children: comparisons of different protocols for cross-sectional 8-month and 7-year longitudinal data. J Bone Miner Res. 2000;15:1181–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Leonard MB, Feldman HI, Zemel BS, Berlin JA, Barden EM, Stallings VA. Evaluation of low density spine software for the assessment of bone mineral density in children. J Bone Miner Res. 1998;13:1687–90.PubMedCrossRefGoogle Scholar
  93. 93.
    Shypailo RJ, Ellis KJ. Bone assessment in children: comparison of fan-beam DXA analysis. J Clin Densitom. 2005;8:445–53.PubMedCrossRefGoogle Scholar
  94. 94.
    Koo WW, Hammami M, Shypailo RJ, Ellis KJ. Bone and body composition measurements of small subjects: discrepancies from software for fan-beam dual energy X-ray absorptiometry. J Am Coll Nutr. 2004;23:647–50.PubMedCrossRefGoogle Scholar
  95. 95.
    Molgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child. 1997;76:9–15.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ellis KJ, Shypailo RJ, Hardin DS, et al. Z score prediction model for assessment of bone mineral content in pediatric diseases. J Bone Miner Res. 2001;16:1658–64.PubMedCrossRefGoogle Scholar
  97. 97.
    Binkley TL, Specker BL, Wittig TA. Centile curves for bone densitometry measurements in healthy males and females ages 5–22 yr. J Clin Densitom. 2002;5:343–53.PubMedCrossRefGoogle Scholar
  98. 98.
    Hannan WJ, Tothill P, Cowen SJ, Wrate RM. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child. 1998;78:396–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Maynard LM, Guo SS, Chumlea WC, et al. Total-body and regional bone mineral content and areal bone mineral density in children aged 8-18 y: the Fels Longitudinal Study. Am J Clin Nutr. 1998;68:1111–7.PubMedGoogle Scholar
  100. 100.
    van der Sluis IM, de Ridder MA, Boot AM, Krenning EP, de Muinck Keizer-Schrama SM. Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults. Arch Dis Child. 2002;87:341–7. discussion -7.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Southard RN, Morris JD, Mahan JD, et al. Bone mass in healthy children: measurement with quantitative DXA. Radiology. 1991;179:735–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Henderson RC, Madsen CD. Bone density in children and adolescents with cystic fibrosis. J Pediatr. 1996;128:28–34.PubMedCrossRefGoogle Scholar
  103. 103.
    Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA. Bone densitometry in Canadian children 8-17 years of age. Calcif Tissue Int. 1996;59:344–51.PubMedCrossRefGoogle Scholar
  104. 104.
    Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD. Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab. 1990;70:1330–3.PubMedCrossRefGoogle Scholar
  105. 105.
    Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73:555–63.PubMedCrossRefGoogle Scholar
  106. 106.
    del Rio L, Carrascosa A, Pons F, Gusinye M, Yeste D, Domenech FM. Bone mineral density of the lumbar spine in white Mediterranean Spanish children and adolescents: changes related to age, sex, and puberty. Pediatr Res. 1994;35:362–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Plotkin H, Nunez M, Alvarez Filgueira ML, Zanchetta JR. Lumbar spine bone density in Argentine children. Calcif Tissue Int. 1996;58:144–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Braillon PM, Cochat P. Analysis of dual energy X-ray absorptiometry whole body results in children, adolescents and young adults. Appl Radiat Isot. 1998;49:623–4.PubMedCrossRefGoogle Scholar
  109. 109.
    Leonard MB, Propert KJ, Zemel BS, Stallings VA, Feldman HI. Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr. 1999;135:182–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Katzman DK, Bachrach LK, Carter DR, Marcus R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab. 1991;73:1332–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Prentice A, Parsons TJ, Cole TJ. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994;60:837–42.PubMedGoogle Scholar
  112. 112.
    Gafni RI, Baron J. Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy x-ray absorptiometry (DEXA). J Pediatr. 2004;144:253–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Stephens M, Batres LA, Ng D, Baldassano R. Growth failure in the child with inflammatory bowel disease. Semin Gastrointest Dis. 2001;12:253–62.PubMedGoogle Scholar
  114. 114.
    Zemel BS, Leonard MB, Kelly A, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95:1265–73.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992;7:137–45.PubMedCrossRefGoogle Scholar
  116. 116.
    Kroger H, Vainio P, Nieminen J, Kotaniemi A. Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone. 1995;17:157–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Leonard MB, Shults J, Elliott DM, Stallings VA, Zemel BS. Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography. Bone. 2004;34:1044–52.PubMedCrossRefGoogle Scholar
  118. 118.
    Kroger H, Kotaniemi A, Kroger L, Alhava E. Development of bone mass and bone density of the spine and femoral neck–a prospective study of 65 children and adolescents. Bone Miner. 1993;23:171–82.PubMedCrossRefGoogle Scholar
  119. 119.
    Kroger H, Kotaniemi A, Vainio P, Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner. 1992;17:75–85.PubMedCrossRefGoogle Scholar
  120. 120.
    Wren TA, Liu X, Pitukcheewanont P, Gilsanz V. Bone acquisition in healthy children and adolescents: comparisons of dual-energy x-ray absorptiometry and computed tomography measures. J Clin Endocrinol Metab. 2005;90:1925–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Gilsanz V. Bone density in children: a review of the available techniques and indications. Eur J Radiol. 1998;26:177–82.PubMedCrossRefGoogle Scholar
  122. 122.
    Ferretti JL. Perspectives of pQCT technology associated to biomechanical studies in skeletal research employing rat models. Bone. 1995;17:353S–64S.PubMedCrossRefGoogle Scholar
  123. 123.
    Leonard MB, Zemel BS. Current concepts in pediatric bone disease. Pediatr Clin North Am. 2002;49:143–73.PubMedCrossRefGoogle Scholar
  124. 124.
    Tsampalieros A, Berkenstock MK, Zemel BS, et al. Changes in trabecular bone density in incident pediatric Crohn’s disease: a comparison of imaging methods. Osteoporos Int J Established as Result Coop Eur Found Osteoporos Nat Osteoporos Found USA. 2014;25:1875–83.CrossRefGoogle Scholar
  125. 125.
    Walther F, Fusch C, Radke M, Beckert S, Findeisen A. Osteoporosis in pediatric patients suffering from chronic inflammatory bowel disease with and without steroid treatment. J Pediatr Gastroenterol Nutr. 2006;43:42–51.PubMedCrossRefGoogle Scholar
  126. 126.
    Ahmed SF, Horrocks IA, Patterson T, et al. Bone mineral assessment by dual energy X-ray absorptiometry in children with inflammatory bowel disease: evaluation by age or bone area. J Pediatr Gastroenterol Nutr. 2004;38:276–80.PubMedCrossRefGoogle Scholar
  127. 127.
    Herzog D, Bishop N, Glorieux F, Seidman EG. Interpretation of bone mineral density values in pediatric Crohn’s disease. Inflamm Bowel Dis. 1998;4:261–7.PubMedGoogle Scholar
  128. 128.
    Burnham JM, Shults J, Semeao E, et al. Body-composition alterations consistent with cachexia in children and young adults with Crohn disease. Am J Clin Nutr. 2005;82:413–20.PubMedGoogle Scholar
  129. 129.
    Gupta A, Paski S, Issenman R, Webber C. Lumbar spine bone mineral density at diagnosis and during follow-up in children with IBD. J Clin Densitom. 2004;7:290–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Laakso S, Valta H, Verkasalo M, Toiviainen-Salo S, Makitie O. Compromised peak bone mass in patients with inflammatory bowel disease – a prospective study. J Pediatr. 2014;164:1436–43.e1.PubMedCrossRefGoogle Scholar
  131. 131.
    Leonard MB, Feldman HI, Shults J, Zemel BS, Foster BJ, Stallings VA. Long-term, high-dose glucocorticoids and bone mineral content in childhood glucocorticoid-sensitive nephrotic syndrome. N Engl J Med. 2004;351:868–75.PubMedCrossRefGoogle Scholar
  132. 132.
    Sylvester FA, Davis PM, Wyzga N, Hyams JS, Lerer T. Are activated T cells regulators of bone metabolism in children with Crohn disease? J Pediatr. 2006;148:461–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Werkstetter KJ, Pozza SB, Filipiak-Pittroff B, et al. Long-term development of bone geometry and muscle in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011;106:988–98.PubMedCrossRefGoogle Scholar
  134. 134.
    Schmidt S, Mellstrom D, Norjavaara E, Sundh V, Saalman R. Longitudinal assessment of bone mineral density in children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2012;55:511–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Griffin LM, Thayu M, Baldassano RN, et al. Improvements in bone density and structure during anti-TNF-alpha therapy in pediatric Crohn’s Disease. J Clin Endocrinol Metab. 2015;100:2630–9.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Bernstein CN, Leslie WD, Taback SP. Bone density in a population-based cohort of premenopausal adult women with early onset inflammatory bowel disease. Am J Gastroenterol. 2003;98:1094–100.PubMedCrossRefGoogle Scholar
  137. 137.
    Azzopardi N, Ellul P. Risk factors for osteoporosis in Crohn’s disease: infliximab, corticosteroids, body mass index, and age of onset. Inflamm Bowel Dis. 2013;19:1173–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Bass S, Pearce G, Young N, Seeman E. Bone mass during growth: the effects of exercise. Exercise and mineral accrual. Acta Univ Carol Med (Praha). 1994;40:3–6.Google Scholar
  139. 139.
    Robinson RJ, Krzywicki T, Almond L, et al. Effect of a low-impact exercise program on bone mineral density in Crohn’s disease: a randomized controlled trial. Gastroenterology. 1998;115:36–41.PubMedCrossRefGoogle Scholar
  140. 140.
    Tan VP, Macdonald HM, Kim S, et al. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res Off J Am Soc Bone Mineral Res. 2014;29:2161–81.CrossRefGoogle Scholar
  141. 141.
    Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997;315:1255–60.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Chan GM, Hoffman K, McMurry M. Effects of dairy products on bone and body composition in pubertal girls. J Pediatr. 1995;126:551–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Johnston Jr CC, Miller JZ, Slemenda CW, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med. 1992;327:82–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Lee WT, Leung SS, Wang SH, et al. Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr. 1994;60:744–50.PubMedGoogle Scholar
  145. 145.
    Lloyd T, Andon MB, Rollings N, et al. Calcium supplementation and bone mineral density in adolescent children. N Engl J Med. 1992;327:82–7.CrossRefGoogle Scholar
  146. 146.
    Bonjour JP, Carrie AL, Ferrari S, et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest. 1997;99:1287–94.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Stauffer JQ. Hyperoxaluria and intestinal disease. The role of steatorrhea and dietary calcium in regulating intestinal oxalate absorption. Am J Dig Dis. 1977;22:921–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Worcester EM. Stones from bowel disease. Endocrinol Metab Clin North Am. 2002;31:979–99.PubMedCrossRefGoogle Scholar
  149. 149.
    Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press; 1997.Google Scholar
  150. 150.
    Heaney RP. Long-latency deficiency disease: insights from calcium and vitamin D. Am J Clin Nutr. 2003;78:912–9.PubMedGoogle Scholar
  151. 151.
    Heaney RP. Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am J Clin Nutr. 2004;80:1706S–9S.PubMedGoogle Scholar
  152. 152.
    Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003;77:204–10.PubMedGoogle Scholar
  153. 153.
    Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004;89:5387–91.PubMedCrossRefGoogle Scholar
  154. 154.
    Weaver CM, Fleet JC. Vitamin D requirements: current and future. Am J Clin Nutr. 2004;80:1735S–9S.PubMedGoogle Scholar
  155. 155.
    Calvo MS, Whiting SJ, Barton CN. Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr. 2004;80:1710S–6S.PubMedGoogle Scholar
  156. 156.
    Calvo MS, Whiting SJ. Prevalence of vitamin D insufficiency in Canada and the United States: importance to health status and efficacy of current food fortification and dietary supplement use. Nutr Rev. 2003;61:107–13.PubMedCrossRefGoogle Scholar
  157. 157.
    Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR. Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone. 2002;30:771–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011.Google Scholar
  159. 159.
    Alaimo K, McDowell MA, Briefel RR, et al. Dietary intake of vitamins, minerals, and fiber of persons ages 2 months and over in the United States: Third National Health and Nutrition Examination Survey, Phase 1, 1988-91. Adv Data. 1994;258:1–28.Google Scholar
  160. 160.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.PubMedCrossRefGoogle Scholar
  161. 161.
    Ott SM. Long-term safety of bisphosphonates. J Clin Endocrinol Metab. 2005;90:1897–9.PubMedCrossRefGoogle Scholar
  162. 162.
    Rauch F, Plotkin H, Zeitlin L, Glorieux FH. Bone mass, size, and density in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate therapy. J Bone Miner Res. 2003;18:610–4.PubMedCrossRefGoogle Scholar
  163. 163.
    Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339:947–52.PubMedCrossRefGoogle Scholar
  164. 164.
    Glorieux FH. Bisphosphonate therapy for severe osteogenesis imperfecta. J Pediatr Endocrinol Metab. 2000;13(Suppl 2):989–92.PubMedGoogle Scholar
  165. 165.
    Marini JC. Do bisphosphonates make children’s bones better or brittle? N Engl J Med. 2003;349:423–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Whyte MP, Wenkert D, Clements KL, McAlister WH, Mumm S. Bisphosphonate-induced osteopetrosis. N Engl J Med. 2003;349:457–63.PubMedCrossRefGoogle Scholar
  167. 167.
    Glorieux FH, Rauch F, Shapiro JR. Bisphosphonates in children with bone diseases. N Engl J Med. 2003;349:2068–71. author reply -71.PubMedCrossRefGoogle Scholar
  168. 168.
    Steelman J, Zeitler P. Treatment of symptomatic pediatric osteoporosis with cyclic single-day intravenous pamidronate infusions. J Pediatr. 2003;142:417–23.PubMedCrossRefGoogle Scholar
  169. 169.
    Gandrud LM, Cheung JC, Daniels MW, Bachrach LK. Low-dose intravenous pamidronate reduces fractures in childhood osteoporosis. J Pediatr Endocrinol Metab. 2003;16:887–92.PubMedCrossRefGoogle Scholar
  170. 170.
    Cimaz R, Gattorno M, Sormani MP, et al. Changes in markers of bone turnover and inflammatory variables during alendronate therapy in pediatric patients with rheumatic diseases. J Rheumatol. 2002;29:1786–92.PubMedGoogle Scholar
  171. 171.
    Acott PD, Wong JA, Lang BA, Crocker JF. Pamidronate treatment of pediatric fracture patients on chronic steroid therapy. Pediatr Nephrol. 2005;20:368–73.PubMedCrossRefGoogle Scholar
  172. 172.
    Stewart WA, Acott PD, Salisbury SR, Lang BA. Bone mineral density in juvenile dermatomyositis: assessment using dual x-ray absorptiometry. Arthritis Rheum. 2003;48:2294–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Rodd C. Bisphosphonates in dialysis and transplantation patients: efficacy and safety issues. Perit Dial Int. 2001;21(Suppl 3):S256–60.PubMedGoogle Scholar
  174. 174.
    Klein GL, Wimalawansa SJ, Kulkarni G, Sherrard DJ, Sanford AP, Herndon DN. The efficacy of acute administration of pamidronate on the conservation of bone mass following severe burn injury in children: a double-blind, randomized, controlled study. Osteoporos Int. 2005;16:631–5.PubMedCrossRefGoogle Scholar
  175. 175.
    Ringuier B, Leboucher B, Leblanc M, et al. Effect of oral biphosphonates in patients with cystic fibrosis and low bone mineral density. Arch Pediatr. 2004;11:1445–9.PubMedCrossRefGoogle Scholar
  176. 176.
    Hawker GA, Ridout R, Harris VA, Chase CC, Fielding LJ, Biggar WD. Alendronate in the treatment of low bone mass in steroid-treated boys with Duchennes muscular dystrophy. Arch Phys Med Rehabil. 2005;86:284–8.PubMedCrossRefGoogle Scholar
  177. 177.
    Bianchi ML, Cimaz R, Bardare M, et al. Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Arthritis Rheum. 2000;43:1960–6.PubMedCrossRefGoogle Scholar
  178. 178.
    Gordon CM. Bone loss in children with Crohn disease: Evidence of “osteoimmune” alterations. J Pediatr. 2006;148:429–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PediatricsSeattle Children’s Hospital, University of WashingtonSeattleUSA
  2. 2.Department of PediatricsThe Children’s Hospital of Philadelphia, University of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations