Advertisement

Origin and Domestication

  • Guillaume BesnardEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

The olive is the most iconic Mediterranean tree. The multiple uses of wild and cultivated olives make this species economically significant and a keystone of traditional Mediterranean agrosystems. The literature on its domestication is reviewed here, with a focus on the recent results on population, archaeobotanical, and genetic studies. Since the Late Tertiary, the olive distribution has been shaped by past climatic and geological changes as well as humans during prehistoric and historic times. It is usually accepted that olive has been primarily domesticated in the Levant. Three main gene pools are, however, identified for the cultivated olive in eastern, Central, and western Mediterranean. These centers of diversity likely reflect crop diversification from East to West but could also result from independent domestications. The breeding process is still ongoing, including areas outside of the native range where cultivated olives and wild relatives were introduced into the same regions. Gene exchanges between wild and cultivated olives have played a major role in the diversification of the crop. In the future, the in situ conservation of wild populations, locally endangered, should be essential to preserve the evolutionary potential of the cultivated olive.

Keywords

Admixture Archaeobotany Mediterranean agrosystem Oleaster Phylogeography Primary domestication 

Notes

Acknowledgments

I thank the members of the EDB laboratory for fruitful discussions. I’m also grateful to A. Cornille, P. Cuneo, L. Chikhi and R. Rubio de Casas for helpful comments, and to M. Goudet for providing the olive distribution map. GB is supported by TULIP (ANR-10-LABX-0041) and PESTOLIVE (ARIMNet action KBBE 219262).

References

  1. Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified polymorphic fragment length polymorphisms. Theor Appl Genet 98:411–421CrossRefGoogle Scholar
  2. Arias-Calderón R, Rodríguez-Jurado D, León L, Bejarano-Alcázar J, De la Rosa R et al (2015) Pre-breeding for resistance to Verticillium wilt in olive: fishing in the wild relative gene pool. Crop Protect 75:25–33CrossRefGoogle Scholar
  3. Baali-Cherif D, Besnard G (2005) High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar, Algeria. Ann Bot 96:823–830CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S et al (2006) Genetic structure of wild and cultivated olives in the central mediterranean basin. Ann Bot 98:935–942CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  6. Barazani O, Westberg E, Hanin N, Dag A, Kerem Z et al (2014) A comparative analysis of genetic variation in rootstocks and scions of old olive trees: a window into the history of olive cultivation practices and past genetic variation. BMC Plant Biol 14:146CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bartolini G, Prevost G, Messeri C, Carignani C (2005) Olive Germplasm: cultivars and world-wide collections. FAO/Plant Production and Protection, Rome. Available at: http://www.apps3.fao.org/wiews/olive/oliv.jsp
  8. Beghé D, García-Molano JF, Fabbri A, Ganino T (2015) Olive biodiversity in Colombia. A molecular study of local germplasm. Sci Hortic-Amsterdam 189:122–131CrossRefGoogle Scholar
  9. Belaj A, Trujillo I, De la Rosa R, Rallo L (2001) Polymorphism and discrimination capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hortic Sci 126:64–71Google Scholar
  10. Belaj A, Muñoz-Diez C, Baldoni L, Satovic Z, Barranco D (2010) Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Sci Hortic-Amsterdam 124:323–330CrossRefGoogle Scholar
  11. Belaj A, del Carmen Dominguez-García M, Atienza SG, Atienza SG, Urdíroz NM et al (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378CrossRefGoogle Scholar
  12. Besnard G, Bervillé A (2002) On chloroplast DNA variations in the Olive (Olea europaea L.) complex: comparison of RFLP and PCR polymorphisms. Theor Appl Genet 104:1157–1163CrossRefPubMedGoogle Scholar
  13. Besnard G, Baali-Cherif D (2009) Coexistence of diploids and triploids in a Saharan relict olive: evidence from nuclear microsatellite and flow cytometry analyses. C R Biol 332:1115–1120CrossRefPubMedGoogle Scholar
  14. Besnard G, El Bakkali A (2014) Sequence analysis of single-copy genes in two wild olive subspecies (Olea europaea L.): nucleotide diversity and potential use for testing admixture. Genome 57:145–153CrossRefPubMedGoogle Scholar
  15. Besnard G, Rubio de Casas R (2016) Single vs multiple independent olive domestications: the jury is (still) out. New Phytol 209:466–470CrossRefPubMedGoogle Scholar
  16. Besnard G, Baradat P, Bervillé A (2001a) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258CrossRefGoogle Scholar
  17. Besnard G, Baradat P, Breton C, Khadari B, Bervillé A (2001b) Olive domestication from structure of oleasters and cultivars using nuclear RAPDs and mitochondrial RFLPs. Genet Sel Evol 33:S251–S268Google Scholar
  18. Besnard G, Khadari B, Baradat P, Bervillé A (2002) Combination of chloroplast and mitochondrial DNA polymorphisms to study cytoplasm genetic differentiation in the olive complex (Olea europaea L.). Theor Appl Genet 105:139–144CrossRefPubMedGoogle Scholar
  19. Besnard G, Rubio de Casas R, Vargas P (2007) Plastid and nuclear DNA polymorphism reveals historical processes of isolation and reticulation in the olive tree complex (Olea europaea). J Biogeogr 34:736–752CrossRefGoogle Scholar
  20. Besnard G, Garcίa-Verdugo C, Rubio de Casas R, Treier UA, Galland N et al (2008) Polyploidy in the olive complex (Olea europaea L.): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 101:25–30CrossRefPubMedGoogle Scholar
  21. Besnard G, Rubio de Casas R, Christin PA, Vargas P (2009) Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann Bot 104:143–160CrossRefPubMedPubMedCentralGoogle Scholar
  22. Besnard G, El Bakkali A, Haouane H, Baali-Cherif D, Moukhli A et al (2013a) Population genetics of Mediterranean and Saharan olives: geographic patterns of differentiation and evidence for early-generations of admixture. Ann Bot 112:1293–1302CrossRefPubMedPubMedCentralGoogle Scholar
  23. Besnard G, Khadari B, Navascués M, Mazuecos-Fernandez M, El Bakkali A et al (2013b) The complex history of the olive tree: from late quaternary diversification of mediterranean lineages to primary domestication in the northern Levant. Proc Roy Soc Lond B 280:20122833CrossRefGoogle Scholar
  24. Besnard G, Dupuy J, Larter M, Cuneo P, Cooke D et al (2014) History of the invasive African olive tree in Australia and Hawaii: evidence for sequential bottlenecks and hybridizations with the mediterranean olive. Evol Appl 7:195–211CrossRefPubMedGoogle Scholar
  25. Biton I, Shevtsov S, Ostersetzer O, Mani Y, Lavee S et al (2012) Genetic relationships and hybrid vigour in olive (Olea europaea L.) by microsatellites. Plant Breed 131:767–774CrossRefGoogle Scholar
  26. Biton I, Doron-Faigenboim A, Jamwal M, Mani Y, Eshed R et al (2015) Development of a large set of SNP markers for assessing phylogenetic relationships between the olive cultivars composing the Israeli olive germplasm collection. Mol Breed 35:107CrossRefGoogle Scholar
  27. Breton C, Terral JF, Pinatel C, Médail F, Bonhomme F et al (2008) The origins of the domestication of the olive tree. C R Biol 332:1059–1064CrossRefGoogle Scholar
  28. Cáceres ME, Ceccarelli M, Pupilli F, Sarri V, Mencuccini M (2015) Obtainment of inter-subspecific hybrids in olive (Olea europaea L.). Euphytica 201:307–319CrossRefGoogle Scholar
  29. Carrión Y, Ntinou M, Badal E (2010) Olea europaea L. in the north mediterranean basin during the Pleniglacial and the early-middle Holocene. Quat Sci Rev 29:952–968CrossRefGoogle Scholar
  30. Chevalier A (1948) L’origine de l’Olivier cultivé et ses variations. Rev Int Bot Appl Agri Trop 28:1–25Google Scholar
  31. Ciferri R, Breviglieri N (1942) Introduzione ad una classificazione morpho-ecologica dell’olivo coltivato in Italia. L’Olivocoltore 19:1–7Google Scholar
  32. Claros MG, Crespillo R, Aguilar ML, Canovas FM (2000) DNA fingerprinting and classification of geographically related genotypes of olive tree (Olea europaea L.). Euphytica 116:131–142CrossRefGoogle Scholar
  33. Cornille A, Gladieux P, Smulders MJM, Roldán-Ruiz I, Laurens F et al (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8:e1002703CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cornuault J, Khimoun A, Cuneo P, Besnard G (2015) Spatial segregation and realized niche shift during the parallel invasion of two olive subspecies in south-eastern Australia. J Biogeogr 42:1930–1941CrossRefGoogle Scholar
  35. Cuneo P, Leishman MR (2006) African Olive (Olea europaea subsp. cuspidata) as an environmental weed in eastern Australia: a review. Cunninghamia 9:545–577Google Scholar
  36. De Menocal PB (1995) Plio-Pleistocene African climate. Science 270:53–59CrossRefGoogle Scholar
  37. Dίez CM, Trujillo I, Barrio E, Belaj A, Barranco D et al (2011) Centennial olive trees as a reservoir of genetic diversity. Ann Bot 108:797–807CrossRefGoogle Scholar
  38. Dίez CM, Imperato A, Rallo L, Baranco D, Trujillo I (2012) Worldwide core collection of olive cultivars based on simple sequence repeat and morphological markers. Crop Sci 52:211–221CrossRefGoogle Scholar
  39. Dίez CM, Trujillo I, Martinez-Uriroz N, Barranco D, Rallo L et al (2015) Olive domestication and diversification in the mediterranean basin. New Phytol 206:436–447CrossRefGoogle Scholar
  40. Díez CM, Moral J, Barranco D, Rallo L (2016) Genetic diversity and conservation of olive genetic resources. In: Ahuja MR, Mohan Jain S (eds) Genetic diversity and erosion in plants: case histories. sustainable development and biodiversity series, vol 8. Springer, Switzerland, pp 337–356Google Scholar
  41. Edwards PC, Meadows J, Sayej G, Westaway M (2004) From the PPNA to the PPNB: new views from the southern Levant after excavations at Zahrat adh-Dhra‘ 2 in Jordan. Paléorient 30:21–60CrossRefGoogle Scholar
  42. Galili E, Stanley DJ, Sharvit J, Weinstein-Evron M (1997) Evidence for earliest olive-oil production in submerged settlements off the Carmel coast. Isr J Archaeol Sci 24:1141–1150CrossRefGoogle Scholar
  43. Gautier F, Clauzon G, Suc JP, Cravatte J, Violanti D (1994) Age and duration of the Messinian salinity crisis. C R Acad Sci Sér IIA 318:1103–1109Google Scholar
  44. Green PS (2002) A revision of Olea L. (Oleaceae). Kew Bull 57:91–140CrossRefGoogle Scholar
  45. Hannachi H, Sommerlate H, Breton C, Msallem M, El Gazzah M et al (2009) Oleaster (var. sylvestris) and subsp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea subsp. europaea var. europaea). Genet Resour Crop Evol 56:393–403CrossRefGoogle Scholar
  46. Haouane H, El Bakkali A, Moukhli A, Tollon C, Santoni S et al (2011) Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimised management and use of mediterranean olive genetic resources. Genetica 139:1083–1094CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hobman F (1993) olive information package. Primary Industries South Australia, 371 pGoogle Scholar
  48. Hosseini-Mazinani M, Mariotti R, Torkzaban B, Sheikh-Hassani M, Ataei S et al (2014) High genetic diversity detected in olives beyond the boundaries of the mediterranean sea. PLoS ONE 9:e93146CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kaniewski D, Van Campo E, Boiy T, Terral JF, Khadari B et al (2012) Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidences from the Middle East. Biol Rev 87:885–899CrossRefPubMedGoogle Scholar
  50. Khadari B, Breton C, Moutier N, Roger JP, Besnard G et al (2003) The use of molecular markers for germplasm management in a French olive collection. Theor Appl Genet 106:521–529CrossRefPubMedGoogle Scholar
  51. Khadari B, Charafi J, Moukhli A, Ater M (2008) Substantial genetic diversity in cultivated Moroccan olive despite a single major cultivar: a paradoxical situation evidenced by the use of SSR loci. Tree Genet Genomes 4:213–221CrossRefGoogle Scholar
  52. Kislev ME, Nadel D, Carmi I (1992) Epipalaeolithic (19,000 B.P.) cereal and fruit diet at Ohalo II, Sea of Galilee, Israel. Rev Palaeobot Palynol 73:161–166CrossRefGoogle Scholar
  53. Klepo T, De la Rosa R, Satovic Z, León L, Belaj A (2013) Utility of wild germplasm in olive breeding. Sci Hortic 152:92–101CrossRefGoogle Scholar
  54. Koehmstedt AM, Aradhya MK, Soleri D, Smith JL, Polito V (2011) Molecular characterization of genetic diversity, structure, and differentiation in the olive (Olea europaea L.) germplasm collection of the United States Department of Agriculture. Genet Resour Crop Evol 58:519–531CrossRefGoogle Scholar
  55. Lavee S, Zohary D (2011) The potential of genetic diversity and the effect of geographically isolated resources in olive breeding. Isr J Plant Sci 59:3–13CrossRefGoogle Scholar
  56. Linos A, Nikoloudakis N, Katsiotis A, Hagidimitriou M (2014) Genetic structure of the Greek olive germplasm revealed by RAPD, ISSR and SSR markers. Sci Hortic 175:33–43CrossRefGoogle Scholar
  57. Liphschitz N, Gophna R, Hartman M, Biger G (1991) The beginning of olive (Olea europaea) cultivation in the old world: a reassessment. J Archaeol Sci 18:441–453CrossRefGoogle Scholar
  58. Loumou A, Giourga C (2003) Olive groves: “The life and identity of the mediterranean”. Agric Hum Values 20:87–95CrossRefGoogle Scholar
  59. Lumaret R, Ouazzani N (2001) Ancient wild olives in mediterranean forests. Nature 413:700CrossRefPubMedGoogle Scholar
  60. Lumaret R, Ouazzani N, Michaud H, Vivier G, Deguilloux MF et al (2004) Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the mediterranean basin. Heredity 92:343–351CrossRefPubMedGoogle Scholar
  61. Margaritis E (2013) Distinguishing exploitation, domestication, cultivation and production: the olive in the third millennium Aegean. Antiquity 337:746–757CrossRefGoogle Scholar
  62. Marra FP, Caruso T, Costa F, Di Vaio C, Mafrica R et al (2013) Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in Southern Italy revealed by SSR markers. Tree Genet Genomes 9:961–973CrossRefGoogle Scholar
  63. McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332CrossRefPubMedGoogle Scholar
  64. Médail F, Quézel P, Besnard G, Khadari B (2001) Systematics, ecology and phylogeographic significance of Olea europaea L. subsp. maroccana [Greuter & Burdet P. Vargas et al. a relictual olive tree in south-west Morocco]. Bot J Linn Soc 137:249–266Google Scholar
  65. Mousavi S, Hosseini-Mazinani M, Arzani K, Ydollahi A, Pandolfi S et al (2014) Molecular and morphological characterization of Golestan (Iran) olive ecotypes provides evidence for the presence of promising genotypes. Genet Resour Crop Evol 61:775–785CrossRefGoogle Scholar
  66. Muzzalupo I, Vendramin GG, Chiappetta A (2014) Genetic biodiversity of Italian olives (Olea europaea) germplasm analyzed by SSR markers. Sci World J 2014:296590CrossRefGoogle Scholar
  67. Newberry PE (1937) On some African species of the genus Olea and the original home of the cultivated olive-tree. Proc Linn Soc Lond 150:3–16CrossRefGoogle Scholar
  68. Newton C, Lorre C, Sauvage C, Ivorra S, Terral JF (2014) On the origins and spread of Olea europaea L. (olive) domestication: evidence for shape variation of olive stones at Ugarit, late bronze age, Syria: a window on the mediterranean basin and on the westward diffusion of olive varieties. Veget Hist Archaeobot 23:567–575CrossRefGoogle Scholar
  69. Noormohammadi Z, Trujillo I, Belaj A, Ataei S, Hosseini-Mazinani M (2014) Genetic structure of Iranian olive cultivars and their relationship with mediterranean’s cultivars revealed by SSR markers. Sci Hortic 178:175–183CrossRefGoogle Scholar
  70. Oliver D (1868) Flora of Tropical Africa. Reeve L & Co, AshfordCrossRefGoogle Scholar
  71. Owen CA, Bita EC, Banilas G, Hajjar SE, Sellianakis V et al (2005) AFLP reveals structural details of genetic diversity within cultivated olive germplasm from the eastern mediterranean. Theor Appl Genet 110:1169–1176CrossRefPubMedGoogle Scholar
  72. Renfrew C (1972) The emergence of civilisation. The Cyclades and the Aegean in the Third Millennium BC, Methuen, London, UKGoogle Scholar
  73. Rubio de Casas R, Besnard G, Schönswetter P, Balaguer L, Vargas P (2006) Extensive gene flow blurs phylogeographic but not phylogenetic signal in Olea europaea L. Theor Appl Genet 113:575–583CrossRefPubMedGoogle Scholar
  74. Schaal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schuster M, Duringer P, Ghienne JF, Vignaud P, Mackaye HT et al (2006) The age of the Sahara desert. Science 311:821CrossRefPubMedGoogle Scholar
  76. Sedgley M (2004) Wild olive selection for quality oil production. Rural Industries Research and Development Corporation, Canberra, Australia. RIRDC Publication no 04/101, 56 pGoogle Scholar
  77. Suc JP (1984) Origin and evolution of the mediterranean vegetation and climate in Europe. Nature 307:429–432CrossRefGoogle Scholar
  78. Tardi A (2014) The culinary uses of extra-virgin olive oil. In: Peri C (ed) The extra-virgin olive oil handbook. Wiley, Chichester, pp 321–337CrossRefGoogle Scholar
  79. Terral JF (1997) La domestication de l’olivier (Olea europaea L.) en Méditerranée nord-occidentale: Approche morphométrique et implications paléoclimatiques. PhD, Université Montpellier II, FranceGoogle Scholar
  80. Terral JF, Alonso N, Buxói Capdevila R, Chatti N, Fabre L et al (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31:63–77Google Scholar
  81. Trapero C, Rallo L, López-Escudero FJ, Barranco D, Díez CM (2015) Variability and selection of verticillium wilt resistant genotypes in cultivated olive and in the Olea genus. Plant Pathol 64:890–900CrossRefGoogle Scholar
  82. Turrill WB (1951) Wild and cultivated olives. Kew Bull 3:437–442CrossRefGoogle Scholar
  83. Vossen P (2007) Olive oil: history, production, and characteristics of the world’s classic oils. HortScience 42:1093–1100Google Scholar
  84. Yoruk B, Taskin V (2014) Genetic diversity and relationships of wild and cultivated olives in Turkey. Plant Syst Evol 300:1247–1258CrossRefGoogle Scholar
  85. Zeder MA (2011) The origins of agriculture in the near east. Curr Anthropol 52:S221–S235CrossRefGoogle Scholar
  86. Zehdi-Azouzi S, Cherif E, Moussouni S, Gros-Balthazard M, Abbas Naqvi S et al (2015) Genetic structure of the date palm (Phoenix dactylifera) in the old world reveals a strong differentiation between eastern and western populations. Ann Bot 116:101–112CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhan MM, Cheng ZZ, Su GC, Wang AY, Chen HP et al (2015) Genetic relationships analysis of olive cultivars grown in China. Genet Mol Res 14:5958–5969CrossRefPubMedGoogle Scholar
  88. Zohary D (1994) The wild genetic resources of the cultivated olive. Acta Hortic 356:62–65CrossRefGoogle Scholar
  89. Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of cultivated plants in southwest asia, europe, and the mediterranean basin. Oxford University Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.CNRS-UPS-ENSFEA, EDB, UMR 5174Université Paul SabatierToulouseFrance

Personalised recommendations