Skip to main content

Origin and Domestication

  • Chapter
  • First Online:
The Olive Tree Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The olive is the most iconic Mediterranean tree. The multiple uses of wild and cultivated olives make this species economically significant and a keystone of traditional Mediterranean agrosystems. The literature on its domestication is reviewed here, with a focus on the recent results on population, archaeobotanical, and genetic studies. Since the Late Tertiary, the olive distribution has been shaped by past climatic and geological changes as well as humans during prehistoric and historic times. It is usually accepted that olive has been primarily domesticated in the Levant. Three main gene pools are, however, identified for the cultivated olive in eastern, Central, and western Mediterranean. These centers of diversity likely reflect crop diversification from East to West but could also result from independent domestications. The breeding process is still ongoing, including areas outside of the native range where cultivated olives and wild relatives were introduced into the same regions. Gene exchanges between wild and cultivated olives have played a major role in the diversification of the crop. In the future, the in situ conservation of wild populations, locally endangered, should be essential to preserve the evolutionary potential of the cultivated olive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified polymorphic fragment length polymorphisms. Theor Appl Genet 98:411–421

    Article  CAS  Google Scholar 

  • Arias-Calderón R, Rodríguez-Jurado D, León L, Bejarano-Alcázar J, De la Rosa R et al (2015) Pre-breeding for resistance to Verticillium wilt in olive: fishing in the wild relative gene pool. Crop Protect 75:25–33

    Article  Google Scholar 

  • Baali-Cherif D, Besnard G (2005) High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar, Algeria. Ann Bot 96:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S et al (2006) Genetic structure of wild and cultivated olives in the central mediterranean basin. Ann Bot 98:935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Barazani O, Westberg E, Hanin N, Dag A, Kerem Z et al (2014) A comparative analysis of genetic variation in rootstocks and scions of old olive trees: a window into the history of olive cultivation practices and past genetic variation. BMC Plant Biol 14:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartolini G, Prevost G, Messeri C, Carignani C (2005) Olive Germplasm: cultivars and world-wide collections. FAO/Plant Production and Protection, Rome. Available at: http://www.apps3.fao.org/wiews/olive/oliv.jsp

  • Beghé D, García-Molano JF, Fabbri A, Ganino T (2015) Olive biodiversity in Colombia. A molecular study of local germplasm. Sci Hortic-Amsterdam 189:122–131

    Article  Google Scholar 

  • Belaj A, Trujillo I, De la Rosa R, Rallo L (2001) Polymorphism and discrimination capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hortic Sci 126:64–71

    CAS  Google Scholar 

  • Belaj A, Muñoz-Diez C, Baldoni L, Satovic Z, Barranco D (2010) Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Sci Hortic-Amsterdam 124:323–330

    Article  CAS  Google Scholar 

  • Belaj A, del Carmen Dominguez-García M, Atienza SG, Atienza SG, Urdíroz NM et al (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378

    Article  Google Scholar 

  • Besnard G, Bervillé A (2002) On chloroplast DNA variations in the Olive (Olea europaea L.) complex: comparison of RFLP and PCR polymorphisms. Theor Appl Genet 104:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Baali-Cherif D (2009) Coexistence of diploids and triploids in a Saharan relict olive: evidence from nuclear microsatellite and flow cytometry analyses. C R Biol 332:1115–1120

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, El Bakkali A (2014) Sequence analysis of single-copy genes in two wild olive subspecies (Olea europaea L.): nucleotide diversity and potential use for testing admixture. Genome 57:145–153

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Rubio de Casas R (2016) Single vs multiple independent olive domestications: the jury is (still) out. New Phytol 209:466–470

    Article  PubMed  Google Scholar 

  • Besnard G, Baradat P, Bervillé A (2001a) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258

    Article  CAS  Google Scholar 

  • Besnard G, Baradat P, Breton C, Khadari B, Bervillé A (2001b) Olive domestication from structure of oleasters and cultivars using nuclear RAPDs and mitochondrial RFLPs. Genet Sel Evol 33:S251–S268

    CAS  Google Scholar 

  • Besnard G, Khadari B, Baradat P, Bervillé A (2002) Combination of chloroplast and mitochondrial DNA polymorphisms to study cytoplasm genetic differentiation in the olive complex (Olea europaea L.). Theor Appl Genet 105:139–144

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Rubio de Casas R, Vargas P (2007) Plastid and nuclear DNA polymorphism reveals historical processes of isolation and reticulation in the olive tree complex (Olea europaea). J Biogeogr 34:736–752

    Article  Google Scholar 

  • Besnard G, Garcίa-Verdugo C, Rubio de Casas R, Treier UA, Galland N et al (2008) Polyploidy in the olive complex (Olea europaea L.): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 101:25–30

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Rubio de Casas R, Christin PA, Vargas P (2009) Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann Bot 104:143–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besnard G, El Bakkali A, Haouane H, Baali-Cherif D, Moukhli A et al (2013a) Population genetics of Mediterranean and Saharan olives: geographic patterns of differentiation and evidence for early-generations of admixture. Ann Bot 112:1293–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besnard G, Khadari B, Navascués M, Mazuecos-Fernandez M, El Bakkali A et al (2013b) The complex history of the olive tree: from late quaternary diversification of mediterranean lineages to primary domestication in the northern Levant. Proc Roy Soc Lond B 280:20122833

    Article  CAS  Google Scholar 

  • Besnard G, Dupuy J, Larter M, Cuneo P, Cooke D et al (2014) History of the invasive African olive tree in Australia and Hawaii: evidence for sequential bottlenecks and hybridizations with the mediterranean olive. Evol Appl 7:195–211

    Article  PubMed  Google Scholar 

  • Biton I, Shevtsov S, Ostersetzer O, Mani Y, Lavee S et al (2012) Genetic relationships and hybrid vigour in olive (Olea europaea L.) by microsatellites. Plant Breed 131:767–774

    Article  CAS  Google Scholar 

  • Biton I, Doron-Faigenboim A, Jamwal M, Mani Y, Eshed R et al (2015) Development of a large set of SNP markers for assessing phylogenetic relationships between the olive cultivars composing the Israeli olive germplasm collection. Mol Breed 35:107

    Article  Google Scholar 

  • Breton C, Terral JF, Pinatel C, Médail F, Bonhomme F et al (2008) The origins of the domestication of the olive tree. C R Biol 332:1059–1064

    Article  Google Scholar 

  • Cáceres ME, Ceccarelli M, Pupilli F, Sarri V, Mencuccini M (2015) Obtainment of inter-subspecific hybrids in olive (Olea europaea L.). Euphytica 201:307–319

    Article  Google Scholar 

  • Carrión Y, Ntinou M, Badal E (2010) Olea europaea L. in the north mediterranean basin during the Pleniglacial and the early-middle Holocene. Quat Sci Rev 29:952–968

    Article  Google Scholar 

  • Chevalier A (1948) L’origine de l’Olivier cultivé et ses variations. Rev Int Bot Appl Agri Trop 28:1–25

    Google Scholar 

  • Ciferri R, Breviglieri N (1942) Introduzione ad una classificazione morpho-ecologica dell’olivo coltivato in Italia. L’Olivocoltore 19:1–7

    Google Scholar 

  • Claros MG, Crespillo R, Aguilar ML, Canovas FM (2000) DNA fingerprinting and classification of geographically related genotypes of olive tree (Olea europaea L.). Euphytica 116:131–142

    Article  CAS  Google Scholar 

  • Cornille A, Gladieux P, Smulders MJM, Roldán-Ruiz I, Laurens F et al (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8:e1002703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornuault J, Khimoun A, Cuneo P, Besnard G (2015) Spatial segregation and realized niche shift during the parallel invasion of two olive subspecies in south-eastern Australia. J Biogeogr 42:1930–1941

    Article  Google Scholar 

  • Cuneo P, Leishman MR (2006) African Olive (Olea europaea subsp. cuspidata) as an environmental weed in eastern Australia: a review. Cunninghamia 9:545–577

    Google Scholar 

  • De Menocal PB (1995) Plio-Pleistocene African climate. Science 270:53–59

    Article  Google Scholar 

  • Dίez CM, Trujillo I, Barrio E, Belaj A, Barranco D et al (2011) Centennial olive trees as a reservoir of genetic diversity. Ann Bot 108:797–807

    Article  Google Scholar 

  • Dίez CM, Imperato A, Rallo L, Baranco D, Trujillo I (2012) Worldwide core collection of olive cultivars based on simple sequence repeat and morphological markers. Crop Sci 52:211–221

    Article  Google Scholar 

  • Dίez CM, Trujillo I, Martinez-Uriroz N, Barranco D, Rallo L et al (2015) Olive domestication and diversification in the mediterranean basin. New Phytol 206:436–447

    Article  Google Scholar 

  • Díez CM, Moral J, Barranco D, Rallo L (2016) Genetic diversity and conservation of olive genetic resources. In: Ahuja MR, Mohan Jain S (eds) Genetic diversity and erosion in plants: case histories. sustainable development and biodiversity series, vol 8. Springer, Switzerland, pp 337–356

    Google Scholar 

  • Edwards PC, Meadows J, Sayej G, Westaway M (2004) From the PPNA to the PPNB: new views from the southern Levant after excavations at Zahrat adh-Dhra‘ 2 in Jordan. Paléorient 30:21–60

    Article  Google Scholar 

  • Galili E, Stanley DJ, Sharvit J, Weinstein-Evron M (1997) Evidence for earliest olive-oil production in submerged settlements off the Carmel coast. Isr J Archaeol Sci 24:1141–1150

    Article  Google Scholar 

  • Gautier F, Clauzon G, Suc JP, Cravatte J, Violanti D (1994) Age and duration of the Messinian salinity crisis. C R Acad Sci Sér IIA 318:1103–1109

    Google Scholar 

  • Green PS (2002) A revision of Olea L. (Oleaceae). Kew Bull 57:91–140

    Article  Google Scholar 

  • Hannachi H, Sommerlate H, Breton C, Msallem M, El Gazzah M et al (2009) Oleaster (var. sylvestris) and subsp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea subsp. europaea var. europaea). Genet Resour Crop Evol 56:393–403

    Article  CAS  Google Scholar 

  • Haouane H, El Bakkali A, Moukhli A, Tollon C, Santoni S et al (2011) Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimised management and use of mediterranean olive genetic resources. Genetica 139:1083–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Hobman F (1993) olive information package. Primary Industries South Australia, 371 p

    Google Scholar 

  • Hosseini-Mazinani M, Mariotti R, Torkzaban B, Sheikh-Hassani M, Ataei S et al (2014) High genetic diversity detected in olives beyond the boundaries of the mediterranean sea. PLoS ONE 9:e93146

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaniewski D, Van Campo E, Boiy T, Terral JF, Khadari B et al (2012) Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidences from the Middle East. Biol Rev 87:885–899

    Article  PubMed  Google Scholar 

  • Khadari B, Breton C, Moutier N, Roger JP, Besnard G et al (2003) The use of molecular markers for germplasm management in a French olive collection. Theor Appl Genet 106:521–529

    Article  CAS  PubMed  Google Scholar 

  • Khadari B, Charafi J, Moukhli A, Ater M (2008) Substantial genetic diversity in cultivated Moroccan olive despite a single major cultivar: a paradoxical situation evidenced by the use of SSR loci. Tree Genet Genomes 4:213–221

    Article  Google Scholar 

  • Kislev ME, Nadel D, Carmi I (1992) Epipalaeolithic (19,000 B.P.) cereal and fruit diet at Ohalo II, Sea of Galilee, Israel. Rev Palaeobot Palynol 73:161–166

    Article  Google Scholar 

  • Klepo T, De la Rosa R, Satovic Z, León L, Belaj A (2013) Utility of wild germplasm in olive breeding. Sci Hortic 152:92–101

    Article  Google Scholar 

  • Koehmstedt AM, Aradhya MK, Soleri D, Smith JL, Polito V (2011) Molecular characterization of genetic diversity, structure, and differentiation in the olive (Olea europaea L.) germplasm collection of the United States Department of Agriculture. Genet Resour Crop Evol 58:519–531

    Article  Google Scholar 

  • Lavee S, Zohary D (2011) The potential of genetic diversity and the effect of geographically isolated resources in olive breeding. Isr J Plant Sci 59:3–13

    Article  Google Scholar 

  • Linos A, Nikoloudakis N, Katsiotis A, Hagidimitriou M (2014) Genetic structure of the Greek olive germplasm revealed by RAPD, ISSR and SSR markers. Sci Hortic 175:33–43

    Article  CAS  Google Scholar 

  • Liphschitz N, Gophna R, Hartman M, Biger G (1991) The beginning of olive (Olea europaea) cultivation in the old world: a reassessment. J Archaeol Sci 18:441–453

    Article  Google Scholar 

  • Loumou A, Giourga C (2003) Olive groves: “The life and identity of the mediterranean”. Agric Hum Values 20:87–95

    Article  Google Scholar 

  • Lumaret R, Ouazzani N (2001) Ancient wild olives in mediterranean forests. Nature 413:700

    Article  CAS  PubMed  Google Scholar 

  • Lumaret R, Ouazzani N, Michaud H, Vivier G, Deguilloux MF et al (2004) Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the mediterranean basin. Heredity 92:343–351

    Article  CAS  PubMed  Google Scholar 

  • Margaritis E (2013) Distinguishing exploitation, domestication, cultivation and production: the olive in the third millennium Aegean. Antiquity 337:746–757

    Article  Google Scholar 

  • Marra FP, Caruso T, Costa F, Di Vaio C, Mafrica R et al (2013) Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in Southern Italy revealed by SSR markers. Tree Genet Genomes 9:961–973

    Article  Google Scholar 

  • McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332

    Article  PubMed  Google Scholar 

  • Médail F, Quézel P, Besnard G, Khadari B (2001) Systematics, ecology and phylogeographic significance of Olea europaea L. subsp. maroccana [Greuter & Burdet P. Vargas et al. a relictual olive tree in south-west Morocco]. Bot J Linn Soc 137:249–266

    Google Scholar 

  • Mousavi S, Hosseini-Mazinani M, Arzani K, Ydollahi A, Pandolfi S et al (2014) Molecular and morphological characterization of Golestan (Iran) olive ecotypes provides evidence for the presence of promising genotypes. Genet Resour Crop Evol 61:775–785

    Article  Google Scholar 

  • Muzzalupo I, Vendramin GG, Chiappetta A (2014) Genetic biodiversity of Italian olives (Olea europaea) germplasm analyzed by SSR markers. Sci World J 2014:296590

    Article  Google Scholar 

  • Newberry PE (1937) On some African species of the genus Olea and the original home of the cultivated olive-tree. Proc Linn Soc Lond 150:3–16

    Article  Google Scholar 

  • Newton C, Lorre C, Sauvage C, Ivorra S, Terral JF (2014) On the origins and spread of Olea europaea L. (olive) domestication: evidence for shape variation of olive stones at Ugarit, late bronze age, Syria: a window on the mediterranean basin and on the westward diffusion of olive varieties. Veget Hist Archaeobot 23:567–575

    Article  Google Scholar 

  • Noormohammadi Z, Trujillo I, Belaj A, Ataei S, Hosseini-Mazinani M (2014) Genetic structure of Iranian olive cultivars and their relationship with mediterranean’s cultivars revealed by SSR markers. Sci Hortic 178:175–183

    Article  CAS  Google Scholar 

  • Oliver D (1868) Flora of Tropical Africa. Reeve L & Co, Ashford

    Book  Google Scholar 

  • Owen CA, Bita EC, Banilas G, Hajjar SE, Sellianakis V et al (2005) AFLP reveals structural details of genetic diversity within cultivated olive germplasm from the eastern mediterranean. Theor Appl Genet 110:1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Renfrew C (1972) The emergence of civilisation. The Cyclades and the Aegean in the Third Millennium BC, Methuen, London, UK

    Google Scholar 

  • Rubio de Casas R, Besnard G, Schönswetter P, Balaguer L, Vargas P (2006) Extensive gene flow blurs phylogeographic but not phylogenetic signal in Olea europaea L. Theor Appl Genet 113:575–583

    Article  CAS  PubMed  Google Scholar 

  • Schaal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster M, Duringer P, Ghienne JF, Vignaud P, Mackaye HT et al (2006) The age of the Sahara desert. Science 311:821

    Article  CAS  PubMed  Google Scholar 

  • Sedgley M (2004) Wild olive selection for quality oil production. Rural Industries Research and Development Corporation, Canberra, Australia. RIRDC Publication no 04/101, 56 p

    Google Scholar 

  • Suc JP (1984) Origin and evolution of the mediterranean vegetation and climate in Europe. Nature 307:429–432

    Article  Google Scholar 

  • Tardi A (2014) The culinary uses of extra-virgin olive oil. In: Peri C (ed) The extra-virgin olive oil handbook. Wiley, Chichester, pp 321–337

    Chapter  Google Scholar 

  • Terral JF (1997) La domestication de l’olivier (Olea europaea L.) en Méditerranée nord-occidentale: Approche morphométrique et implications paléoclimatiques. PhD, Université Montpellier II, France

    Google Scholar 

  • Terral JF, Alonso N, Buxói Capdevila R, Chatti N, Fabre L et al (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31:63–77

    Google Scholar 

  • Trapero C, Rallo L, López-Escudero FJ, Barranco D, Díez CM (2015) Variability and selection of verticillium wilt resistant genotypes in cultivated olive and in the Olea genus. Plant Pathol 64:890–900

    Article  Google Scholar 

  • Turrill WB (1951) Wild and cultivated olives. Kew Bull 3:437–442

    Article  Google Scholar 

  • Vossen P (2007) Olive oil: history, production, and characteristics of the world’s classic oils. HortScience 42:1093–1100

    Google Scholar 

  • Yoruk B, Taskin V (2014) Genetic diversity and relationships of wild and cultivated olives in Turkey. Plant Syst Evol 300:1247–1258

    Article  Google Scholar 

  • Zeder MA (2011) The origins of agriculture in the near east. Curr Anthropol 52:S221–S235

    Article  Google Scholar 

  • Zehdi-Azouzi S, Cherif E, Moussouni S, Gros-Balthazard M, Abbas Naqvi S et al (2015) Genetic structure of the date palm (Phoenix dactylifera) in the old world reveals a strong differentiation between eastern and western populations. Ann Bot 116:101–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan MM, Cheng ZZ, Su GC, Wang AY, Chen HP et al (2015) Genetic relationships analysis of olive cultivars grown in China. Genet Mol Res 14:5958–5969

    Article  CAS  PubMed  Google Scholar 

  • Zohary D (1994) The wild genetic resources of the cultivated olive. Acta Hortic 356:62–65

    Article  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of cultivated plants in southwest asia, europe, and the mediterranean basin. Oxford University Press, New York

    Book  Google Scholar 

Download references

Acknowledgments

I thank the members of the EDB laboratory for fruitful discussions. I’m also grateful to A. Cornille, P. Cuneo, L. Chikhi and R. Rubio de Casas for helpful comments, and to M. Goudet for providing the olive distribution map. GB is supported by TULIP (ANR-10-LABX-0041) and PESTOLIVE (ARIMNet action KBBE 219262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Besnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Besnard, G. (2016). Origin and Domestication. In: Rugini, E., Baldoni, L., Muleo, R., Sebastiani, L. (eds) The Olive Tree Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-48887-5_1

Download citation

Publish with us

Policies and ethics