Skip to main content

Rubber Based Bionanocomposites: Preparation and State of Art

  • Chapter
  • First Online:
Rubber Based Bionanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 56))

  • 554 Accesses

Abstract

The present chapter deals with a brief account on various topics in rubber based bionanocomposites: preparation and state of art. This chapter discussed with different topics such as cellulose based rubber nanocomposites, chitin based rubber nanocomposites, applications of chitin based rubber nanocomposites, chitin in rubber based blends and micro composites, starch in rubber based blends and micro composites, polylactic acid based rubber composites and nanocomposites, applications of rubber based biocomposites and bionanocomposites, vinyl ester (BisGMA)/SEBS/f-MWCNTs based nanocomposites preparation and applications and starch based rubber nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.L. Crawford, Lignin Biodegradation and Transformation (Wiley, New York, 1981). ISBN 0-471-05743-6

    Google Scholar 

  2. R. Young, Cellulose Structure Modification and Hydrolysis (Wiley, New York, 1986). ISBN 0471827614

    Google Scholar 

  3. D.M. Updegraff, Anal. Biochem. 32, 420–424 (1969)

    Article  Google Scholar 

  4. S. Kuga, R.M. Brown, Carbohydr. Res. 180, 345–350 (1988)

    Article  Google Scholar 

  5. K.R.Z. Andress, J. Phys. Chem. Part B 190, 38 (1929)

    Google Scholar 

  6. Y. Habibi, L.A. Lucia, O.J. Rojas, Chem. Rev. 110, 3479–3500 (2010)

    Article  Google Scholar 

  7. H. Chanzy, Y. Nishiyama, P. Langan, J. Am. Chem. Soc. 121(43), 9940–9946 (1999)

    Article  Google Scholar 

  8. C. Klason, J. Kubat, H.E. Stromvall, Int. J. Polym. Mater. 11(1), 9–38 (1985)

    Article  Google Scholar 

  9. P. Zadorecki, A.J. Michell, Polym. Compos. 10(2), 69–77 (1989)

    Article  Google Scholar 

  10. D. Maldas, B.V. Kokta, R. Raj, G.C. Daneault, Polymer 29(7), 1255–1265 (1988)

    Article  Google Scholar 

  11. P. Terech, L. Chazeau, J.-Y. Cavaille, Macromolecules 32, 1872–1875 (1999)

    Article  Google Scholar 

  12. F.G. Torres, R. Flores, J.F. Dienstmaier, O.A. Quintana, Polym. Compos. 13, 753–764 (2005)

    Google Scholar 

  13. F.G. Torres, O.H. Arroyo, C. Gomez, Thermoplast. Compos. Mater. 20, 207–223 (2007)

    Article  Google Scholar 

  14. F.G. Torres, C.L. Aragon, Polym. Test. 25, 568–577 (2006)

    Article  Google Scholar 

  15. F.G. Torres, O.H. Arroyo, C. Grande, E. Esparza, Int. J. Polym. Mater. 55, 1115–1132 (2006)

    Article  Google Scholar 

  16. C. Grande, F.G. Torres, Adv. Polym. Technol. 24, 145–156 (2005)

    Article  Google Scholar 

  17. M. Roman, W.T. Winter, Biomacromolecules 5, 1671–1677 (2004)

    Article  Google Scholar 

  18. M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O.J. Rojas, Biomacomolecules 11, 674–681 (2010)

    Article  Google Scholar 

  19. T. Zimmermann, E. Pöhler, T. Geiger, Adv. Eng. Mater. 6, 754–761 (2004)

    Article  Google Scholar 

  20. M.A.S. Azizi Samir, F. Alloin, J.-Y. Sanchez, A. Dufresne, Macromolecules 37, 4839–4844 (2004)

    Article  Google Scholar 

  21. C. Legnani, C. Vilani, V.L. Calil, H.S. Barud, W.G. Quirino, C.A. Achete, S.J.L. Ribeiro, M. Cremona, Thin Solid Films 517, 1016–1020 (2008)

    Article  Google Scholar 

  22. D.R. Rathke, S.M. Hudson, J. Macromol. Sci. Rev. Macromol. Chem. Phys. 34, 375 (1994)

    Article  Google Scholar 

  23. W. Arbia, L. Arbia, L.A.A. Adour, Chitin extraction from crustacean shells using biological methods—a review. Food Technol. Biotechnol. 51, 12–25 (2013)

    Google Scholar 

  24. K. Gopalan Nair, A. Dufresne, Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4(3), 657–665 (2003)

    Article  Google Scholar 

  25. D.K. Singh, A.R.J. Ray, Macromol. Sci. Rev. Macromol. Chem. Phys. C40, 69 (2000)

    Article  Google Scholar 

  26. Y. Lu, L. Weng, L. Zhang, Biomacromolecules 5, 1046 (2004)

    Article  Google Scholar 

  27. M. Paillet, A. Dufresne, Macromolecules 34, 6527 (2001)

    Article  Google Scholar 

  28. S.I Fuku, M. Nogi, K. Abe, M. Yoshioka, M. Morimoto, H. Saimoto, H. Yano, Carbohydr. Polym. 84, 762 (2011)

    Google Scholar 

  29. P. Wongpanit, N. Sanchavanakit, P. Pavasant, T. Bunaprasert, Y. Tabata, R. Rujiravanit, Eur. Polym. J. 43, 4123 (2007)

    Article  Google Scholar 

  30. J.-B. Zeng, Y.-S. He, S.-L. Li, Y.-Z. Wang, Biomacromolecules 13, 1 (2012)

    Google Scholar 

  31. M.J. Zaini, M.Y.A. Fuad, H. Ismail, M.S. Mansor, J. Mustafah, Polym. Int. 40, 51 (1996)

    Article  Google Scholar 

  32. B. Krajewska, Enzym. Micro Technol. 35, 126–139 (2004)

    Article  Google Scholar 

  33. N.L. Yusof, A. Wee, L.Y. Lim, E. Khor, Biomed. Mater. Res. Part A 66A, 224–232 (2003)

    Article  Google Scholar 

  34. M. Kanke, H. Katayama, S. Tsuzuki, H. Kuramoto, Chem. Pharm. Bull. 37, 523–525 (1989)

    Article  Google Scholar 

  35. Y. Kato, H. Onishi, Y.J. Machida, Curr. Pharm. Biotechnol. 4, 303–309 (2003)

    Article  Google Scholar 

  36. K. Gopalan Nair, A. Dufresne, Biomacromolecules 4(3), 657–665 (2003)

    Article  Google Scholar 

  37. A. Morin, A. Dufresne, Macromolecules 35, 2190–2199 (2002)

    Article  Google Scholar 

  38. K. Gopalan Nair, A. Dufresne, Biomacromolecules 4(3), 666–674 (2003)

    Article  Google Scholar 

  39. K. Gopalan Nair, A. Dufresne, Biomacromolecules 4(6), 1835–1842 (2003)

    Article  Google Scholar 

  40. M.A.S. Azizi Samir, F. Alloin, J.Y. Sanche, N. El Kissi, A. Dufresne, Macromolecules 37, 1386–1393 (2004)

    Article  Google Scholar 

  41. R.J. Rujiravanit, J. Sriupayo, P. Supaphol, J. Blackwell, Carbohydr. Polym. 62, 130–136 (2005)

    Article  Google Scholar 

  42. E. Ruiz-Hitzky, M. Darder (eds.), Curr. nanosci. 2, 153–294 (2006)

    Google Scholar 

  43. J.K. Pandey, A.P. Kumar, M. Misra, A.K. Mohanty, L.T. Drzal, R.P.J. Singh, j. nanosci. nanotechnol. 5(4), 497–526 (2005)

    Google Scholar 

  44. C. Gousse, H. Chanzy, G. Excoffier, L. Soubeyrand, E. Fleury, Polymer 43, 2645–2651 (2002)

    Article  Google Scholar 

  45. O.J. Rojas, G.A. Montero, Y. Habibi, J. Appl. Polym. Sci. 113, 927–935 (2009)

    Article  Google Scholar 

  46. Y. Matsushita, A. Suzuki, T. Sekiguchi, K. Saito, T. Imai, K. Fukushima, Appl. Surf. Sci. 255, 1022–1024 (2008)

    Article  Google Scholar 

  47. V.G. Geethamma, G. Kalaprasad, G. Groeninckx, S. Thomas, Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. Part A Appl. Sci. Manufact. 36(11), 1499–1506 (2005)

    Article  Google Scholar 

  48. V.G. Geethamma, S. Thomas, Diffusion of water and artificial seawater through coir fiber reinforced natural rubber composites. Polym. Compos. 26(2), 136–143 (2005)

    Article  Google Scholar 

  49. K.M. Zia, M. Barikani, M. Zuber, I.A. Bhatti, M.A. Sheikh, Molecular engineering of chitin based polyurethane elastomers. Carbohydr. Polym. 74(2), 149–158 (2008)

    Article  Google Scholar 

  50. M. Barikani, H. Honarkar, M. Barikani, Synthesis and characterization of polyurethane elastomers based on chitosan and poly(epsilon-caprolactone). J. Appl. Polym. Sci. 112(5), 3157–3165 (2009)

    Article  Google Scholar 

  51. H. Ismail, S.M. Shaari, N. Othman, The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym. Test. 30(7), 784–790 (2011)

    Article  Google Scholar 

  52. H. Ismail, F.S. Haw, Effects of palm ash loading and maleated natural rubber as a coupling agent on the properties of palm-ash-filled natural rubber composites. J. Appl. Polym. Sci. 110(5), 2867–2876 (2008)

    Article  Google Scholar 

  53. K.M. Zia, K. Mahmood, M. Zuber, T. Jamil, M. Shafiq, Chitin based polyurethanes using hydroxyl terminated polybutadiene. Part I: molecular engineering. Int. J. Biomacromolecules 59, 320–327 (2013)

    Article  Google Scholar 

  54. K.M. Zia, M. Zuber, M.J. Saif, M. Jawaid, K. Mahmood, M. Shahid et al., Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: surface characteristics. Int. J. Biomacromolecules 62, 670–676 (2013)

    Article  Google Scholar 

  55. K. Gopalan Nair, A. Dufresne, A. Gandini, M.N. Belgacem, Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6), 1835–1842 (2003)

    Article  Google Scholar 

  56. R.A.A. Muzzarelli, P. Morganti, G. Morganti, P. Palombo, M. Palombo, G. Biagini et al., Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr. Polym. 70(3), 274–284 (2007)

    Article  Google Scholar 

  57. A. Morin, A. Dufresne, Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35(6), 2190–2199 (2002)

    Article  Google Scholar 

  58. S. Phongying, S. Aiba, S. Chirachanchai, Direct chitosan nanoscaffold formation via chitin whiskers. Polymer 48(1), 393–400 (2007)

    Article  Google Scholar 

  59. M. Mincea, A. Negrulescu, V. Ostafe, Preparation, modification, and applications of chitin nanowhiskers: a review. Rev. Adv. Mater. Sci. 30(3), 225–242 (2012)

    Google Scholar 

  60. K. Gopalan Nair, A. Dufresne, Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4(3), 666–674 (2003)

    Article  Google Scholar 

  61. M.A. Garcia, M.N. Martino, N.E. Zaritzky, Starch-based coatings: effect on refrigerated strawberry (Fragaria ananassa) quality. J. Sci. Food Agric. 76, 411–420 (1998)

    Article  Google Scholar 

  62. S.H. Imam, S.H. Gordon, L. Mao, L. Chen, Environmentally friendly wood adhesive from a renewable plant polymer: characteristics and optimization. Polym. Degrad. Stab. 73, 529–533 (2001)

    Article  Google Scholar 

  63. Y. Wei, F. Cheng, H. Zheng, Synthesis and flocculating properties of cationic starch derivatives, Carbohydr. Polym. 74, 673–679 (2008)

    Google Scholar 

  64. J. Wu, Y. Wei, J. Lin, S. Lin, Study on starch-graft-acrylamide/mineral powder super absorbent composite. Polymer 44, 6513–6520 (2003)

    Article  Google Scholar 

  65. B.R. Pant, H.-J. Jeon, H.H. Song, Radiation cross-linked carboxymethylated starch and iron removal capacity in aqueous solution. Macromol. Res. 19, 307–312 (2011)

    Article  Google Scholar 

  66. M.-C. Li, J.K. Lee, U.R. Cho, Synthesis, characterization, and enzymatic degradation of starch-grafted poly(methyl methacrylate) copolymer films. J. Appl. Polym. Sci. 125, 405–414 (2012)

    Google Scholar 

  67. E.D.M. Teixeira, D. Pasquini, A.A.S. Curvelo, E. Corradini, M.N. Belgacem, A. Dufresne, Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr. Polym. 78, 422–431 (2009)

    Article  Google Scholar 

  68. D. Liu, Q. Wu, H. Chen, P.R. Chang, Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J. Colloid Interface Sci. 339, 117–124 (2009)

    Article  Google Scholar 

  69. A. Shi, D. Li, L. Wang, B. Lia, B. Adhikari, Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: influence of various process parameters on particle size and stability. Carbohydr. Polym. 83, 1604–1610 (2011)

    Article  Google Scholar 

  70. X. Ma, R. Jian, P.R. Chang, R. Yu, Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9, 3314–3320 (2008)

    Article  Google Scholar 

  71. Y. Tan, K. Xu, L. Li, C. Liu, C. Song, P. Wang, Fabrication of size-controlled starch-based nanospheres by nanoprecipitation. ACS Appl. Mater. Interfaces 1, 956–959 (2009)

    Google Scholar 

  72. S. Xiao, X. Liu, C. Tong, J. Liu, D. Tang, L. Zhao, Studies of poly-L-lysine-starch nanoparticle preparation and its application as gene carrier. Sci. China Ser. B Chem. 48, 162–9166 (2005)

    Article  Google Scholar 

  73. D. Yu, S. Xiao, C. Tong, C. Lin, X. Liu, Dialdehyde starch nanoparticles: preparation and application in drug carrier. Chinese Sci. Bull. 52, 2913–2918 (2007)

    Article  Google Scholar 

  74. S.F. Chin, S.C. Pang, S.H. Tay, Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr. Polym. 86, 1817–1819 (2011)

    Article  Google Scholar 

  75. Y.-J. Wang, V.-D. Truong, L. Wang, Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch/Starke 53, 570–576 (2001)

    Article  Google Scholar 

  76. V.D. Athawale, V. Lele, Syntheses and characterisation of graft copolymers of maize starch and methacrylonitrile. Carbohydr. Polym. 41, 407–416 (2000)

    Article  Google Scholar 

  77. A.J.F. Carvalho, A.E. Job, N. Alves, A.A.S. Curvelo, A. Gandini, Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 53, 95–99 (2003)

    Article  Google Scholar 

  78. A.I. Khalaf, E.M. Sadek, Compatibility study in natural rubber and maize starch blends. J. Appl. Polym. Sci. 125, 959–967 (2012)

    Article  Google Scholar 

  79. Z.F. Wang, Z. Peng, S.D. Li, H. Lin, K.X. Zhang, X.D. She, X. Fu, The impact of esterification on the properties of starch/natural rubber composites. Compos. Sci. Technol. 69, 1797–1803 (2009)

    Article  Google Scholar 

  80. M.C. Li, X. Ge, U.R. Cho, Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber. Macromol. Res. 21, 519–528 (2013)

    Article  Google Scholar 

  81. D. LeCorre, J. Bras, A. Dufresne, Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites, Macromol. Mater. Eng. Doi:10.1002/mame.201100317

  82. M.M. Senna, R.M. Mohamed, A.N. Shehab-Eldin, S. El-Hamouly, Characterization of electron beam irradiated natural rubber/modified starch composites. J. Ind. Eng. Chem. 18, 1654–1661 (2013)

    Article  Google Scholar 

  83. Y.P. Wu, G.H. Liang, L.Q. Zhang, Influence of starch on the properties of carbonblackfilled styrene–butadiene rubber composites. J. Appl. Polym. Sci. 114(4), 2254–2260 (2009)

    Article  Google Scholar 

  84. D.J. Sawyer, Bioprocessing; no longer a field of dreams. Macromol. Symp. 201, 271–281 (2003)

    Article  Google Scholar 

  85. J.R. Dorgan, H.J. Lehermeier, L.I. Palade, J. Cicero, Polylactides: properties and prospects of an environmentally benign plastic from renewable resources. Macromol. Symp. 175, 55–66 (2001)

    Article  Google Scholar 

  86. M. Hiljanen-Vainio, P. Varpomaa, J. Seppälä, P. Törmälä, Modification of poly(l-lactides) by blending: mechanical and hydrolytic behavior. Macromol. Chem. Phys. 197, 1503–1523 (1996)

    Article  Google Scholar 

  87. R.M. Rasal, D.E. Hirt, Toughness decrease of PLA–PHBHHx blend films upon surface-confined photo polymerization. J. Biomed. Mater. Res. Part A 88(4), 1079–1086 (2008)

    Google Scholar 

  88. R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004)

    Article  Google Scholar 

  89. N. Bitinis, R. Verdejo, P. Cassagnau, M.A. Lopez-Manchadoa, Structure and properties of polylactide/natural rubber blends. Mater. Chem. Phys. 129, 823–831 (2011)

    Article  Google Scholar 

  90. B. Meng, J. Deng, Q. Liu, Z. Wu, W. Yang, Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur. Polym. J. 48, 127–135 (2012)

    Article  Google Scholar 

  91. S. Ishida, R. Nagasaki, K. Chino, T. Dong, Y. Inoue, Toughening of poly(L-lactide) by melt blending with rubbers. J. Appl. Polym. Sci. 113, 558–566 (2009)

    Article  Google Scholar 

  92. G. Siqueira, J. Bras, A. Dufresne, Polymers 2, 728 (2010)

    Article  Google Scholar 

  93. D. Puglia, J. Biagiotti, J.M. Kenny, J. Nat. Fibers 1, 23 (2004)

    Article  Google Scholar 

  94. J. Jordan, K.J. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasuk, Experimental trends in polymer nanocomposites—a review. Mater. Sci. Eng. A Struct. 393, 1–11 (2005)

    Google Scholar 

  95. M. Moniruzzaman, K. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  Google Scholar 

  96. A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 40, 1721–1725 (2001)

    Article  Google Scholar 

  97. F. Ciardelli, S. Coiai, E. Passaglia, A. Pucci, G. Ruggeri, Nanocomposites based on polyolefins and functional thermoplastic materials. Polym. Int. 57, 805–836 (2008)

    Article  Google Scholar 

  98. C. Nakason, A. Kaesaman, K. Eardrod, Cure and mechanical properties of natural rubber-g-poly(methyl methacrylate)–cassava starch compounds. Mater. Lett. 59, 4020–4025 (2005)

    Article  Google Scholar 

  99. C. Nakason, A. Kaesaman, S. Homsin, S. Kiatkamjonwong, Rheological and curing behavior of reactive blending. II. Natural rubber-g-poly(methyl methacrylate)–cassava starch. J. Appl. Polym. Sci. 89, 1453–1463 (2003)

    Article  Google Scholar 

  100. C. Nakason, A. Kaesaman, T. Wongkul, S. Kiatkamjonwong, Rheological and curing properties of reactive blending products of epoxidised natural rubber and cassava starch. Plast Rubber Compos. 30, 154–161 (2001)

    Article  Google Scholar 

  101. S. Hizukuri, Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 147, 342–347 (1986)

    Article  Google Scholar 

  102. R. Stute, R.W. Klingler, S. Boguslawski Dipl-Ing, M.N. Eshtiaghi Dipl-Ing, D. Knorr, Effects of high pressures treatment on starches. Starch 48, 11–12 (1996)

    Article  Google Scholar 

  103. A. Imberty, H. Chanzy, S. Perez, A. Buleon, V. Tran, New three-dimensional structure for A-type starch. Macromolecules 20, 2634–2636 (1987)

    Article  Google Scholar 

  104. A. Imberty, S. Perez, A revisit to the three-dimensional structure of B-type starch. Biopolymers 27, 1205–1221 (1988)

    Article  Google Scholar 

  105. F.G. Corvasce, F.A.J. Fourgon, Chemically modified starch reinforced natural rubber composites. EP 1293530 (2003)

    Google Scholar 

  106. T. Tomita, T. Horiguchi, I. Tsumori, Chemically modified starch reinforced natural rubber composites. JP 2005053944 (2005)

    Google Scholar 

  107. C. Wang, Z.L. Pan, P. Zhao, S.B. Fang, Y.J. Li, CN 03109143 (2003)

    Google Scholar 

  108. H. Tang, Q. Qi, Y. Wu, G. Liang, L. Zhang, J. Ma, Reinforcement of elastomer by starch. Macromol. Mater. Eng. 291, 629–637 (2006)

    Article  Google Scholar 

  109. H. Yang, Q. Zhang, M. Guo, C. Wang, R. Du, Q. Fu, Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer 47, 2106–2115 (2006)

    Article  Google Scholar 

  110. A. Dufresne, J.Y. Cavaille, W. Helbert, New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29, 7624–7626 (1996)

    Article  Google Scholar 

  111. S. Pichaiyut, S. Wisunthorn, C. Thongpet, C. Nakason. Novel ternary blends of natural rubber/linear low-density polyethylene/thermoplastic starch: influence of epoxide level of epoxidized natural rubber on blend properties. Iran Polym. J. (2016). Doi:10.1007/S/3726-016-0459-z

  112. M. Bootklad, K. Kaewtatip, Biodegradability, mechanical, and thermal properties of thermoplastic starch/cuttlebone composites. Polym. Compos. 36, 1401–1406 (2007)

    Article  Google Scholar 

  113. C. Yokesahachart, R. Yoksan, Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydr. Polym. 83, 22–31 (2011)

    Article  Google Scholar 

  114. R. Shanks, I. Kong, Thermoplastic Starch, Thermoplastic Elastomers (2012), Rijeka, Croatia, pp. 137–154

    Google Scholar 

  115. M.M. Pang, M.Y. Pun, Z.A.M. Ishak, Degradation studies during water absorption, aerobic biodegradation, and soil burial of biobased thermoplastic starch from agricultural waste/ polypropylene blends. J. Appl. Polym. Sci. 129, 3656–3664 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visakh P.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Visakh P.M. (2017). Rubber Based Bionanocomposites: Preparation and State of Art. In: Visakh P. M. (eds) Rubber Based Bionanocomposites. Advanced Structured Materials, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-48806-6_1

Download citation

Publish with us

Policies and ethics