Skip to main content

Rubber Nanoblends: State of the Art, New Challenges and Opportunities

  • Chapter
  • First Online:
Rubber Nano Blends

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The present chapter deals with a brief account on various topics in rubber nano blends preparation, characterization and applications. This chapter discussed with different topics such natural rubber nano blends, nitrile rubber latex blends, polyurethane rubber based nano blends, chlorosulphonated rubber based nano blends, polybutadiene rubber based nano blends, styrene butadiene rubber based nano blends, polychloroprene rubber based nano blends and ethylene propylene diene rubber nano blends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Suil G et al (2008) Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym Adv Technol 19:1543–1549

    Google Scholar 

  2. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles morphology on the properties of natural rubber based nanocomposites. Eur Polymer J 46:609–620

    Article  CAS  Google Scholar 

  3. Jamal EMA et al (2009) Synthesis of nickel–rubber nanocomposites and evaluation of their dielectric properties. Mater Sci Eng B 156:24–31

    Article  CAS  Google Scholar 

  4. Flavio C et al (2014) Organic acids and protein compounds causing the photoluminescence properties of natural rubber membranes and the quenching phenomena from Au nanoparticle incorporation. Luminescence 29:1047–1052

    Article  Google Scholar 

  5. Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces 6:3811–3816

    Article  CAS  Google Scholar 

  6. Parulekar Y, Mohanty AK (2006) Biodegradable toughened polymers from renewable resources: blends of polyhydroxybutyrate with epoxidized natural rubber and maleated polybutadiene. Green Chem 8:206–213

    Article  CAS  Google Scholar 

  7. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  8. Alex R, Nah C (2006) Studies on natural rubber/acrylonitrile butadiene rubber/organoclay nanocomposites. Plast Rubber Compos 35:219–225

    Article  CAS  Google Scholar 

  9. Lewan MV (1998) NR/NBR blends—compounding for food contact applications. In: Tinker AJ, Jones KP (eds) Blends of natural rubber. Chapman & Hall, London, pp 94–105

    Chapter  Google Scholar 

  10. Tatjana R, Saulute B, Krzysztof P, Jan P (2006) Application of polyurethane-based materials for immobilization of enzymes and cells: a review. Chemija 17:74–89

    Google Scholar 

  11. Sonnenschein MF, Guillaudeu SJ, Landes BG, Wendt BL (2010) Comparison of adipate and succinate polyesters in thermoplastic polyurethanes. Polymer 51:3685–3692

    Article  CAS  Google Scholar 

  12. Robert CK (2008) In: Pascal F (ed) Handbook of specialty elastomers (Chapter 4), CRC Press, Raton, pp 134–154

    Google Scholar 

  13. John S (1997) In: Arcella V, Ferro R (eds) Modern fluoropolymers (Chapter 2), Wiley, West Sussex, pp 71–90

    Google Scholar 

  14. Palanivelu K, Sivaraman P, Sharma SK, Verma SK (2003) Int J Plast Technol 7:133

    CAS  Google Scholar 

  15. Abdeen Z (2014) Enhanced recovery of Pb2+ ions from aquatic media 4 by using polyurethane composite as adsorbent, environmental process, pp 1–15. doi:10.1007/s40710-014-0048-0

  16. Flory PJ (1946) Ind Eng Chem 38(4):417–436

    Article  CAS  Google Scholar 

  17. Fu SY, Xi-Qiao F, Bernd L, Yiu-Wing M (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B 39:933–961

    Article  Google Scholar 

  18. Marković G, Samaržija-Jovanović S, Jovanović V, Marinović-Cincović M (2010) J Therm Anal Calor 100:881–888

    Article  Google Scholar 

  19. Essawy H, El-Nashar D (2004) Polym Test 23(7):803–807

    Article  CAS  Google Scholar 

  20. Marković G, Radovanović B, Marinović-Cincović M, Budinski-Simendić J (2006) Kautch Gummi Kunst 5:251–255

    Google Scholar 

  21. Voet A (1980) J Polym Sci 15:327–373

    CAS  Google Scholar 

  22. Zhang L, Wang Y, Wang Y, Sui Y, Yu D (2000) J Appl Polym Sci 78(11):1873–1878

    Article  CAS  Google Scholar 

  23. Coran AY, Hamed P, Goettler LA (1976) Rubber Chem Technol 49:1167–1181

    Article  CAS  Google Scholar 

  24. Pandit R, Berkessel A, Lach R, Grellmann W, Adhikari R (2012) Synthesis and characterization of nanostructured blends of epoxy resin and block copolymers. Nepal J Sci Technol 13(1):81–88

    Google Scholar 

  25. Corish PJ, Powell BDW (1974) Elastomer blends, rubber, chemistry and technology, vol 47(03), pp 481–510

    Google Scholar 

  26. Zanzig DJ, Yang X, Cohen MP (2010) Tyre with component comprised of a blend of polybutadiene rubber and composite of styrene/butadiene elastomer which contains exfoliated clay platelets, US 7,714,055 B2 to Goodyear

    Google Scholar 

  27. Go JH, Ha CS (1996) Rheology and properties of EPDM/BR blends with or without a homogenizing agent or a coupling agent. J Appl Polym Sci 62(03):509–521

    Article  CAS  Google Scholar 

  28. Zhang Y, Ge S, Tang B, Koga T, Rafailovich MH, Sokolov JC, Peiffer DG, Li Z, Dias AJ, McElrath KO, Lin MY, Satija SK, Urquhart SG, Ade H, Nguyen D (2001) Effect of carbon black and silica fillers in elastomer blends. Macromolecules 34:7056–7065

    Article  CAS  Google Scholar 

  29. Bottazzo J, Guglielmi M, Polizzi S, Brusatin G (2013) Natural rubber/cis-1,4-polybutadiene nanocomposites: vulcanization behavior, mechanical properties, and thermal stability. In: Polymer engineering and science, pp 671–678

    Google Scholar 

  30. Saeed F, Ansarifar A, Ellis R, Meskel Y, Irfan MS (2012) Two advanced styrene-butadiene/polybutadiene rubber blends filled with a silanized silica nanofiller for potential use in passenger car tire tread compound. J Appl Polym Sci 123:1518–1529

    Article  CAS  Google Scholar 

  31. Debapriya D, Panda PK, Bhunia S, Roy M (2014) Effect of sol-gel-derived nano-silica on the properties of natural rubber-poly butadiene rubber-reclaim rubber ternary blends/silica nanocomposites. Polym Plast Technol Eng 53(11):1131–1141

    Article  Google Scholar 

  32. Mangaraj D (2002) Elastomer blends. Rubber Chem Technol 75(03):365–427

    Article  CAS  Google Scholar 

  33. Shanks RA, Kong I (2013) General purpose elastomers: structure, chemistry, physics and performance. In: Advances in elastomers I, advanced structured materials, vol 11. Springer, Berlin. doi:10.1007/978-3-642-20925-3_2

  34. Deepalekshmi P, Visakh PM, Mathew AP, Chandra AK, Thomas S (2013) Advances in elastomers I, advanced structured materials 11, Springer, Heidelberg. doi:10.1007/978-3-642-20925-3_1

  35. Friedrich K, Fakirov S, Zhang Z (2005) Polymer composites from nano- to macro-scale

    Google Scholar 

  36. Apostolo M, Triulzi F (2004) Properties of fluoroelastomer/semicrystalline perfluoropolymer nano-blends. J Fluor Chem 125:303–314

    Article  CAS  Google Scholar 

  37. Hu GH, Cartier H (1999) Reactive extrusion: toward nano blends. Macromolecules 32:4713–4718

    Article  CAS  Google Scholar 

  38. Boonmahitthisud A, Chuayjuljit S (2012) Effects of nanosized polystyrene and polystyrene- encapsulated nanosilica on physical properties of natural rubber/styrene butadiene rubber nanocomposites. Poly Plast Technol Eng 51(3):311–316

    Article  CAS  Google Scholar 

  39. Prasertsri S, Lagarde F, Rattanasom N, Sirisinha C, Daniel P (2013) Raman spectroscopy and thermal analysis of gum and silica-filled NR/SBR blends prepared from latex system. Polym Test 32:852–861

    Google Scholar 

  40. Pal K, Rajasekar R, Kang DJ, Zhang ZX, Pal SK, Das CK, Kim JK (2010) Effect of fillers on natural rubber/high styrene rubber blends with nano silica: morphology and wear, Mater Des 31:677–686

    Google Scholar 

  41. Hosseini SM, Madaeni SS, Khodabakhshi AR (2010) Preparation and characterization of PC/SBR heterogeneous cation exchange membrane filled with carbon nano-tubes. J Membr Sci 362:550–559

    Article  CAS  Google Scholar 

  42. Stephen R, Ranganathaiah C, Varghese S, Joseph K (2006) Sabu Thomas, Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47:858–870

    Article  CAS  Google Scholar 

  43. Tancharernrat T, Rempel GL, Prasassarakich P (2014) Preparation of styrene butadiene copolymer–silica nanocomposites via differential microemulsion polymerization and NR/SBR–SiO2 membranes for pervaporation of water–ethanol mixtures. Chem Eng J 258:290–300

    Article  CAS  Google Scholar 

  44. Mohamed RM (2013) Radiation induced modification of NBR and SBR montmorillonite nanocomposites, J Ind Eng Chem 19:80–86

    Google Scholar 

  45. Deuri AS, Bhowmick AK (1987) J Appl Polym Sci 34:2205–2222

    Article  CAS  Google Scholar 

  46. Ramesan MT, Mathew G, Kuriakose B, Alex R (2001) Eur Polym J 37:719–728

    Google Scholar 

  47. Lewitzke C, Lee P (2001) Application of elastomeric components for noise and vibration isolation in the automotive industry. SAE technical paper 2001-01-1447, doi:10.4271/2001-01-1447

  48. Brydson JA (1978) Rubber chemistry. Applied Science Publishers, London

    Google Scholar 

  49. Deuri SA, De PP, Bhowmick AK, De SK (1988) Studies on the ageing of EPDM based rocket insulator compound by stress relaxation and the effect of propellant binder. Polym Degrad Stab 20(2):135–148

    Article  CAS  Google Scholar 

  50. Jovanović V, Samaržija-Jovanović S, Budinski-Simendić J, Marković G, Marinović-Cincović M, Composites based on carbon black reinforced NBR/EPDM rubber blends. Compos Part B 45:333–340

    Google Scholar 

  51. Kurian T, De PP, Khastgir D, Tripathy DK, De SK, Peiffer DG (1995) Reinforcement of EPDM-based ionic thermoplastic elastomer by carbon black. Polymer 36:3875–3884

    Google Scholar 

  52. Montserrat S, Málek J, Colomer P (1998) Thermal degradation kinetics of epoxy-anhydride resins: I. Influence of a silica filler. Thermochim Acta 313:83–95

    Article  CAS  Google Scholar 

  53. Turmanova SCh, Genieva SD, Dimitrova AS, Vlaev LT (2008) Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett 2:133–146

    Article  CAS  Google Scholar 

  54. Valentini L, Bolognini A, Alvino A, Bon SB, Martin-Gallego M, Lopez-Manchado MA (2014) Pyroshock testing on graphene based EPDM nanocomposites. Compos B Eng 60:479–484

    Google Scholar 

  55. Bhuvaneswari CM, Sureshkumar SM, Kakade SD, Gupta M (2006) Ethylene-propylene diene rubber as a futuristic elastomer for insulation of solid rocket motors. Defense Sci J 56:309–320

    Article  CAS  Google Scholar 

  56. Fan JL, Tsai S-H, Tu F-H, Tu Y-T (2007) Low density rocket motor insulation, United States patent application, Publication No. US2007/0112091 A1, 17 May 2007

    Google Scholar 

  57. Uyarel AY, Pektas I (1996) A thermal analysis investigation of new insulator compositions based on EPDM and phenolic resin. J Therm Anal 46:163–176

    Article  CAS  Google Scholar 

  58. Deuri AS, Bhowmick AK (1986) Ageing of rocket insulator compound based on EPDM. Polym Degrad Stabil 16:221–239

    Article  CAS  Google Scholar 

  59. Deuri AS, Bhowmick AK (1987) Degradation of rocket insulator at high temperature. J Therm Anal 32:755–770

    Article  CAS  Google Scholar 

  60. Harvey AR, Ellertson JW (2003) Rocket motor insulation containing hydrophobic particles, United States patent no. US 6,606,852 B1, Aug 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visakh P.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Visakh P.M. (2017). Rubber Nanoblends: State of the Art, New Challenges and Opportunities. In: Markovic, G., P. M., V. (eds) Rubber Nano Blends. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-48720-5_1

Download citation

Publish with us

Policies and ethics