Skip to main content

Abstract

Waste Electrical and Electronic Equipment (WEEE) offers a significant resource for precious metals such as gold and silver. To maximize precious metal recoveries and sustainable use their behavior during WEEE smelting with copper as the collector metal needs to be characterized. This study experimentally determines the distributions of gold and silver between metallic copper and FeOx-SiO2-Al2O3 slag (LCu/s[Me] = [Me]Copper/[Me]Slag) in alumina-saturation over the oxygen potential range of 10-5–10-10 atm at 1300 °C. The experiments were conducted employing equilibration / quenching followed by major element analysis by Electron Probe Micro-Analysis (EPMA) and trace element analysis by Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) techniques. Our results show silver distribution increased exponentially from 30 to 1000 as a function of decreasing oxygen partial pressure. Gold distribution was 105 at pO2 = 10-5 atm and >106 at pO2 = 10-6–10-10 atm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Cui, L. Zhang, Journal of Hazardous Materials, 158 (2008), 228–256.

    Article  Google Scholar 

  2. P. Chancerel, Journal of Industrial Ecology, 13 (2009), 791–810.

    Article  Google Scholar 

  3. M.E. Schlesinger et al., Extractive Metallurgy of Copper (5th edition, Oxford UK: Elsevier, 2011), 455.

    Google Scholar 

  4. M. Pizzol, M.S. Andersen, M. Thomsen, “Greening of Electronics” (Danish Ministry of the Environment, Environmental, Project No. 1416, 2012).

    Google Scholar 

  5. G. John et al., “MTDATA and the Prediction of Phase Equilibria in Oxide Systems: Thirty Years of Industrial Collaboration”, Submitted to Metallurgical and Materials Transactions B, 2016.

    Google Scholar 

  6. K. Avarmaa et al., Journal of Sustainable Metallurgy, 1 (2015), 216–228.

    Article  Google Scholar 

  7. K. Avarmaa, H. Johto, P. Taskinen, Metallurgical and Materials Transactions B, 47 (2014), 244–255.

    Article  Google Scholar 

  8. G. Roghani, Y. Takeda, K. Itagaki, Metallurgical and Materials Transactions B, 31 (2000), 705–712.

    Article  Google Scholar 

  9. G. Roghani, M. Hino, K. Itagaki, “Phase Equilibrium and Minor Element Distribution between Slag And Copper Matte under High Partial Pressures of SO2”, (Paper presented at the International Conference on Molten Slags, Fluxes and Salts, 1997), 693–703.

    Google Scholar 

  10. Y. Takeda, G. Roghani, “Distribution Equilibrium of Silver in Copper Smelting System”, (Paper presented at the first International Conference on Processing Materials for Properties: Honolulu, USA, 7–10 Nov., 1993), 357–360.

    Google Scholar 

  11. F. Richardson, J. Billington, Bull. Institution of Mining and Metallurgy, 593 (1956), 273–297.

    Google Scholar 

  12. P. Mackey, G. McKerrow, P. Tarassoff, “Minor Elements in the Noranda Process”, (Paper presented at the 104th AIME Annual Meeting, New York, 1975), 27.

    Google Scholar 

  13. Y. Takeda, Transactions of the Japan Institute of Metals, 24 (1983), 518–528.

    Article  Google Scholar 

  14. M. Nagamori, P. Mackey, Metallurgical Transactions B, 9 (1978), 567–579.

    Article  Google Scholar 

  15. K. Nakajima et al., Environmental Science and Technology, 45 (2011), 4929–4936.

    Article  Google Scholar 

  16. K. Nakajima et al., Materials Transactions, 50 (2009), 453–460.

    Article  Google Scholar 

  17. J.H. Park, D.J. Min, Metallurgical and Materials Transactions B 30 (1999), 689–694.

    Article  Google Scholar 

  18. J.H. Park, D.J. Min, Materials Transactions, JIM, 41 (2000), 425–428.

    Article  Google Scholar 

  19. D. Swinbourne, “Solubility of Precious Metals in Slags”, (Paper presented at the European Metallurgical Conference, EMC 2005), 1, 223–235.

    Google Scholar 

  20. D. Swinbourne, X. You, Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy, 108 (1999), C59-C65.

    Google Scholar 

  21. B. ZIOŁEK, W. Szklarski, A. Bogacz, Archives of metallurgy, 36 (1991), 395–408.

    Google Scholar 

  22. H.M. Henao, K. Yamaguchi, S. Ueda, “Distribution of Precious Metals (Au, Pt, Pd, Rh and Ru) between Copper Matte and Iron-Silicate Slag at 1573 K”, (Paper presented at the TMS Fall Extraction and Processing Division: Sohn International Symposium, San Diego, USA, 27–31 August 2006), 1, 723–729.

    Google Scholar 

  23. K. Yamaguchi, “Distribution of Precious Metals between Matte and Slag and Precious Metal Solubility in Slag”, (Paper presented at the Copper 2010), 3, 1287–1295.

    Google Scholar 

  24. R. Altman, Transactions of the Institution of Mining and Metallurgy, 81 (1972), 163–175.

    Google Scholar 

  25. J. Taylor, J. Jeffes, Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy, 84 (1975), C18–24.

    Google Scholar 

  26. J.M. Toguri, N.H. Santander, Metallurgical Transactions, 3 (1972), 586–588.

    Article  Google Scholar 

  27. A. Geveci, T. Rosenqvist, Transactions of the Institution of Mining and Metallurgy, 82 (1973), 193–201.

    Google Scholar 

  28. D. Swinbourne, S. Yan, S. Salim, Mineral Processing and Extractive Metallurgy. 114 (2005), 23–29.

    Article  Google Scholar 

  29. Y.S. Han, D.R. Swinbourne, J.H. Park, Metallurgical and Materials Transactions B, 46 (2015), 2449–2457.

    Article  Google Scholar 

  30. M. Kashima, M. Eguchi, A. Yazawa, Transactions of the Japan Institute of Metals, 19 (1978), 152–158.

    Article  Google Scholar 

  31. A. Roine, HSC Chemistry for Windows, vers. 6.12, Outotec Research, Pori. 2007.

    Google Scholar 

  32. K.P. Jochum et al., Geostandards and Geoanalytical Research, 35 (2011), 397–429.

    Article  Google Scholar 

  33. A. Yazawa, “Thermodynamic Interpretation on Oxidic Dissolution of Metal in Slag”, (Paper presented at the Pyrometall. Complex Mater. Wastes, Aust. Asian Pac. Course Conf. Minerals, Metals and Material Society, Warrendale, 1994), 61–72.

    Google Scholar 

  34. R.S. Celmer, “Cobalt and Gold Distribution in Nickel-Copper Matte Smelting”, (Paper presented at the Nickel Metallurgy, Symposium Proceedings 25th Annual Conference Metallurgy, Toronto, Canada 17–20 August 1986), 1, 147–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Avarmaa, K., O’Brien, H., Taskinen, P. (2016). Equilibria of Gold and Silver between Molten Copper and FeOx-SiO2-Al2O3 Slag in WEEE Smelting at 1300 °C. In: Reddy, R.G., Chaubal, P., Pistorius, P.C., Pal, U. (eds) Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48769-4_20

Download citation

Publish with us

Policies and ethics