Skip to main content

Simulation of Local Material Properties during Laser Beam Welding of Aluminum-Titanium Compounds

  • Conference paper
ICAA13 Pittsburgh

Abstract

Combinations of aluminum and titanium by firmly bonding via laser beam welding enable the production of customized hybrid designs with enhanced properties. A novel approach of coupling process, microstructure and mechanical simulation, considering the development of weld geometry and local material conditions, is intended to deliver a fast and reliable method for evaluating the quasi-static strength of laser beam welded hybrid compounds. For microstructure and mechanical simulations a comprehensive data set of material specific mechanical properties is required to reach simulation results. This includes hot tensile tests, tensile tests concerning the heat affected zone (by means of micro flat specimens) and metallographic examinations to determine the microstructure and hardness. The data set was implemented into a simulation model in order to validate the simulation results including microstructure evolution and resulting local mechanical properties. These results provide the basis for refining and advancing the coupled simulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kreimeyer, M.; Wagner, F.; Vollertsen, F.: Laser processing of aluminum-titanium-tailored blanks, Optics and Lasers in Engineering 43 (2005) 9, 1021–1035.

    Google Scholar 

  2. Seefeld, T.; Kreimeyer, M.; Wagner, F.; Sepold, G.: Laserstrahlfügen von Mischverbindungen, Laser Anwender Forum, Bremen, (2002), 215–223.

    Google Scholar 

  3. Wagner, F.; Kreimeyer, M.; Kocik, R.; Vollertsen, F.: Laser joining of aluminum to titanium with focus on aeronautical applications, Proc. 2nd Pacific International Conference on application of Laser and Optics (PICALO), Orlando, USA, CD-ROM, (2006), 42–47.

    Google Scholar 

  4. Mathieu, A.; Shabadi, R.; Deschamps, A.; Suery, M.; Matte, S.; Grevey, D.; Cicala, E.: Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire), Optics & Laser Technology 39 (2007), 652–661.

    Google Scholar 

  5. Kreimeyer, M.; Wagner, F.; Sepold, G.; Vollertsen, F.: Herstellung von Aluminum-Stahl-Mischverbindungen durch Plasma- sowie durch ein kombiniertes Laserfüge- / Umformverfahren, Berichtskolloquium der DFG-Forschergruppe 505 Hochleistungsfügetechnik für Hybridstrukturen 1 (2005), 83–97.

    Google Scholar 

  6. Sepold, G.; Kreimeyer, M.: Joining of dissimilar materials, Proc. LAMP, High-Power Laser Macroprocessing, Washington, USA, (2002), 526–533.

    Google Scholar 

  7. Keßler, O.; von Bargen, R.; Zoch, H.-W.: Continuous Cooling Transformation (CCT) Diagram of Aluminum Alloy Al-4.5Zn-1Mg, Proc. 10th Int. Conf. on Aluminum Alloys (ICAA10), Vancouver/Ca, Materials Science Forum 519–521 (2006), 1467–1472.

    Google Scholar 

  8. Wagner, F.; Zerner, I.; Kreimeyer, M.; Seefeld, T.; Sepold, G.: Characterization and properties of dissimilar metal combinations of FE/Al and Ti/Al-sheet materials, Proc. 20th International congress on applications of lasers and electro-optics (ICALEO), Orlando, USA, (2001), 365–374.

    Google Scholar 

  9. Schumacher, J.; Irretier, A.; Kocik, R.; Tinscher, R.; Kessler, O.; Sotirov, N.; Bomas, H.: Investigation of Laser-Beam Joined Titanium-Aluminum Hybrid Structures, Applied Production Technology (APT’07), Bremen, (2007), 149–160.

    Google Scholar 

  10. Köhler, B.; Bomas, H.; Zoch, H.-W.; Stalkopf, J.: Werkstoffprüfung an Mikroproben und -halbzeugen, MP Materials Testing 52 11–12 (2010), 759–764

    Google Scholar 

  11. Köhler, B.; Bomas, H.; Zoch, H.-W.; Stalkopf, J.: Mechanical Testing of Micro Specimens and Semi-finished Micro Products, Journal of the Engineering Integrity Society 31 (2011), 18–22

    Google Scholar 

  12. Kocik, R.: Analyse und Bewertung der mechanisch-technologischen Eigenschaften von geschweißten Mischverbindungen aus Aluminum und Titan. Diss. Universität Bremen. Shaker Verlag. Aachen (2009)

    Google Scholar 

  13. [ Ostermann, F.: Anwendungstechnologie Aluminum. 2., neu bearbeitete und aktualisierte Auflage. Springer Verlag (2007), 123–125

    Google Scholar 

  14. Myhr, O.R.; Grong, Ø.: Process modelling applied to 6082-T6 aluminium weldments-I. Reaktion kinetics. Acta metall. Mater. Vol. 39, No. 11, pp.2693–2702, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Barr, A., Hunkel, M., von Hehl, A. (2012). Simulation of Local Material Properties during Laser Beam Welding of Aluminum-Titanium Compounds. In: Weiland, H., Rollett, A.D., Cassada, W.A. (eds) ICAA13 Pittsburgh. Springer, Cham. https://doi.org/10.1007/978-3-319-48761-8_120

Download citation

Publish with us

Policies and ethics