Viscosity-Structure Relationship in the CaO-SiO2-MnO-CaF2 Slag for the Production of Manganese Ferroalloys

  • Joo Hyun Park
  • Kyu Yeol Ko
Conference paper

Abstract

The viscosity of the CaO-SiO2-xMnO-yCaF2 slags (C/S=1.0; x=10, 40%; y=0 to 15%) was measured to clarify the effect of CaF2 on the viscous flow of molten slags at high temperatures. Furthermore, the Raman spectra of the quenched glass samples were quantitatively analyzed to investigate the structural role of CaF2 in a depolymerization of silicate networks. The critical temperature of the slags abruptly increased at 15%CaF2, which was confirmed to originate from a crystallization of cuspidine using XRD analysis. The viscosity of the slags continuously decreased by CaF2 addition in the 10%MnO system, whereas the viscosity of the 40%MnO system was not significantly affected by CaF2 addition. The effect of CaF2 on the viscosity of the slags was quantitatively analyzed using micro-Raman spectra of quenched glass samples accompanying with a concept of silicate polymerization index, Q3/Q2 ratio. A polymerization index continuously decreased with increasing content of CaF2 in the 10%MnO system, whereas it was not affected by CaF2 in the 40%MnO system. Consequently, the bulk thermophysical property of the CaO-SiO2-MnO-CaF2 slags was quantitatively correlated to the structural information.

Keywords

Viscosity CaO-SiO2-MnO-CaF2 slag Raman spectra Structure Depolymerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Segers, A. Fontana, and R. Winand: Electrochim. Acta 24 (1979) 213.CrossRefGoogle Scholar
  2. 2.
    F. Shahbazian, Du Sichen, and S. Seetharaman: ISIJ Int. 39 (1999) 687.CrossRefGoogle Scholar
  3. 3.
    J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B 35B (2004) 269.CrossRefGoogle Scholar
  4. 4.
    J.H. Park, H. Kim, and D.J. Min: Metall. Mater. Trans. B 39B (2008) 150.CrossRefGoogle Scholar
  5. 5.
    J.H. Park: ISIJ Int. 52 (2012) 1627.CrossRefGoogle Scholar
  6. 6.
    L. Wu, J. Gran and Du Sichen: Metall. Mater. Trans. B 42B (2011) 928.CrossRefGoogle Scholar
  7. 7.
    O. Takeda, T. Okawara, and Y. Sato: ISIJ Int. 52 (2012) 1544.CrossRefGoogle Scholar
  8. 8.
    H.S. Park, H. Kim, and I. Sohn: Metall. Mater. Trans. B 42B (2011) 324.CrossRefGoogle Scholar
  9. 9.
    M. Hayashi, T. Watanabe, H. Nakada and K. Nagata: ISIJ Int. 46 (2006) 1805.CrossRefGoogle Scholar
  10. 10.
    K.Y. Ko and J.H. Park: ISIJ Int. 53 (2013) 958.CrossRefGoogle Scholar
  11. 11.
    J.H. Park and D.J. Min: Steel Res. Int. 75 (2004) 807.Google Scholar
  12. 12.
    M. Kawahara, K. Mizoguchi, and Y. Suginohara: Bull. Kyushu Inst. Technol. 43 (1981) 53.Google Scholar
  13. 13.
    F.Z. Ji: Metall. Mater. Trans. B 32B (2001) 181.CrossRefGoogle Scholar
  14. 14.
    J.H. Park, M.O. Suk, I.H. Jung, M. Guo, and B. Blanpain: Steel Res. Int. 81 (2010) 860.CrossRefGoogle Scholar
  15. 15.
    B.O. Mysen and P. Richet: Silicate Glasses and Melts: Properties and Structure, Elsevier, Amsterdam, Netherlands, (2005).Google Scholar
  16. 16.
    B.O. Mysen: Eur. J. Mineral. 15 (2003) 781.CrossRefGoogle Scholar
  17. 17.
    T. Furukawa, K.E. Fox, and W.B. White: J. Chem. Phys. 75 (1981) 3226.CrossRefGoogle Scholar
  18. 18.
    P. McMillan: Am. Mineral. 69 (1984) 622.Google Scholar
  19. 19.
    Y. Iguchi, S. Kashio, T. Goto, Y. Nishina and T. Fuwa: Can. Metall. Quart. 20 (1981) 51.CrossRefGoogle Scholar
  20. 20.
    J.F. Stebbins, J.B. Murdoch, E. Schneider, I.S.E. Carmichael, and A. Pines: Nature 314 (1985) 250.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2014

Authors and Affiliations

  • Joo Hyun Park
    • 1
  • Kyu Yeol Ko
    • 2
  1. 1.Department of Materials EngineeringHanyang UniversityKorea
  2. 2.Metals and Materials Research DepartmentLS-Nikko CopperKorea

Personalised recommendations