Skip to main content

Importance of Interfacial Energy in Precipitation Modeling Using Computational Thermodynamics Techniques

  • Conference paper
TMS 2015 144th Annual Meeting & Exhibition

Abstract

Several industrial alloy systems benefit from or try to avoid the precipitation of second phases. With computational thermodynamics techniques, both the bulk thermodynamics and the diffusion issues are currently well modeled for many systems. Recently, the classical models for nucleation and growth have been coupled with CALPHAD tools creating powerful models, which are very effective in many precipitation calculations. However, classical nucleation and growth models consider interfacial energies and these are not well known in many cases. In this work, calculations in industrial systems- mostly steels- are presented highlighting the importance of this variable on the modeling results and some of the current limitations related to the accessibility to the values of this parameter and its temperature dependence. Some reasons for these difficulties are discussed and possible avenues to solve this problem are brought to discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M Perez, M Dumont, D Acevedo-Reyes. Implementation of classical nucleation and growth theories for precipitation. Acta Materialia. 56 (9) (2008) 2119–32.

    Article  Google Scholar 

  2. B Sundman, B Jansson, J-O Andersson. Thermo-Calc, a databank for calculation of phase equilibria and phase diagrams. Computer Calculation of Phase Diagrams. Orlando: ASM International, Materials Park, OH; 1986.

    Google Scholar 

  3. J-O Andersson et al. Thermo-Calc & DICTRA, computational tools for materials science. CALPHAD. 26(2) (2002) 273–312.

    Article  Google Scholar 

  4. CE Campbell, WJ Boettinger, UR Kattner. Development of a diffusion mobility database for Ni-base superalloys. Acta Materialia. 50(2002) 775–92.

    Article  Google Scholar 

  5. N Saunders et al. Using JMatPro to model materials properties and behavior. JOM. 55(12)(2003) 60–5.

    Article  Google Scholar 

  6. TCAB. TC-PPJSMA, Manual, version 1.0, TCAB, Stockholm, Sweden; 2011.

    Google Scholar 

  7. TCAB. TC-PPJSMA, Manual version 2.0, TCAB, TCAB, Stockholm, Sweden; 2013.

    Google Scholar 

  8. Langer J, Schwartz A@. Phys Rev A. 21(1980) 948–58.

    Google Scholar 

  9. DA Porter, KE Easterling. Phase transformations in metals and alloys. 2nd ed. London: Chapman & Hall; 1992.

    Book  Google Scholar 

  10. FG Wilson, T Gladman. Aluminum Nitride in Steel. Int Metall Rev. 33(5)(1988) 221–88.

    Article  Google Scholar 

  11. E Kozeschnik, et al. AlN precipitation and texture development in batch-annealed bake-hardening steel. Metall Mater Trans A. 30(6)(1999) 1663–73.

    Article  Google Scholar 

  12. R Radis, E Kozeschnik. Kinetics of A1N precipitation in microalloyed steel. Model Simul Mater SciEng. 18(5)(2010) 055003.

    Google Scholar 

  13. A Costa e Silva, L Nakamura, F Rizzo. Application of computational modeling to the kinetics of precipitation of ALN in steels. J Min Metall Sect B Metall. 48(3)(2012) 471–6.

    Article  Google Scholar 

  14. OY Kontsevoi, AJ Freeman, JW Jerome. Quantum Engineering of 3D Interfaces. D-3-D Annual Review Meeting. 2008.

    Google Scholar 

  15. GA Duit@ et al. Proc “THERMEC” 88. 1988. p. 114–21.

    Google Scholar 

  16. M Mayrhofer. Untersuchungen zur Auglösungs- und Auscheidungskinetic von Al-Nitrid in Al-beruhigtm Stahl. Berg Huettenmaenn Monatsheft. 120(1975) 312–21.

    Google Scholar 

  17. H Zurob, Y Brechet, G Purdy. A model for the competition of precipitation and recrystallization in deformed austenite. Acta Materialia. 49(20)(2001) 4183–90.

    Article  Google Scholar 

  18. Y Kang et al. Morphology and precipitation kinetics of AlN in hot strip of low carbon steel produced by compact strip production. Mater Sci Eng A. 2003; 351(1):265–71.

    Article  Google Scholar 

  19. MH Biglari et al. The kinetics of the internal nitriding of Fe-2 at. pct Al alloy. Metall Mater Trans A. 26(4)(1995) 765–76.

    Article  Google Scholar 

  20. Brahmi A, Borrelly R. Study of AlN Precipitation in Pure Fe-Al-N Alloy by Thermoelectric Power Measurements. Acta Mater. 45(5)(1997) 1889–97.

    Article  Google Scholar 

  21. Murr L., Wong G., Horylev R. Measurement of interfacial free energies and associated temperature coefficients in 304 stainless steel. Acta Metall. 21(5)(1973) 595–604.

    Article  Google Scholar 

  22. Schneider A, Inden G. Simulation of the kinetics of precipitation reactions in ferritic steels. Acta Mater. 53(2)(2005) 519–31.

    Article  Google Scholar 

  23. Korcakova L. Microstructure evolution in high strength steel for power plant application: Microscopy and Modelling, PhD Thesis, Copenhagen, T U of Denmark; 2002.

    Google Scholar 

  24. H Leitner et al. Precipitation Behaviour of a Complex Steel. Adv Eng Mater. 8(11)(2006) 1066–77.

    Article  Google Scholar 

  25. O Prat et al. Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels. Acta Mater. 58(18)(2010) 6142–53.

    Article  Google Scholar 

  26. N Zhu et al. Modeling of Nucleation and Growth of M23C6 Carbide in Multi-component Fe-based Alloy. J Mater Sci Technol. 27(8)(2011) 725–8.

    Article  Google Scholar 

  27. Hu X, Zhang M, Wu X, Li L. Simulations of coarsening behavior for M23C6 carbides in AISI H13 steel. J Mater Sci Technol-Shenyang. 22(2)(2006) 153.

    Article  Google Scholar 

  28. Bjärbo A, Hättestrand M. Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel. MetallMater Trans A. 2001; 32(1): 19–27.

    Article  Google Scholar 

  29. Toda Y, Abe F. Prediction of Precipitation Sequences within Grains in 18Cr-8Ni Austenitic Steel by Using System Free Energy Method. ISIJ Int. 49(3)(2009) 439–45.

    Article  Google Scholar 

  30. EA Trillo, LE Murr. A TEM investigation of M23C6 carbide precipitation behavior on varying grain boundary misorientations in 304 stainless steels. J Mater Sci. 33(5)(1998) 1263–71.

    Article  Google Scholar 

  31. B Weiss, R Stickler. Phase instabilities during high temperature exposure of 316 austenitic stainless steel. Metall Trans. 3(4)(1972) 851–66.

    Article  Google Scholar 

  32. A Costa e Silva, R A villez. Efeito da energia interfacial no modelamento da cinética de preci-pitação de carbonetos de cromo em aços inoxidáveis, 69 Congresso ABM:SP, Brasil; 2014.

    Google Scholar 

  33. H Thier, A Baumel, E Schmidtmann. Effect of nitrogen on the precipitation behaviour ofX5CrNiMo 1713 steel. Arch Fuer Eisenhut. — Steel Res. 40(4)(1969) 333–9.

    Google Scholar 

  34. MC Inman, HR Tipler. Interfacial energy and composition in metals and alloys. Metall Rev. 8(1)(1963) 105–66.

    Article  Google Scholar 

  35. A S Skapski, A Theory of surface tension of solids-I Applications to metals. Acta Metall. 4(1956) 576–82.

    Article  Google Scholar 

  36. B Sonderegger, E Kozeschnik. Generalized NNBB Analysis of Randomly Oriented Coherent Interfaces in Multicomponent Fcc Bcc Structures. Metall Mater Trans A. 40(3)(2009) 499–510.

    Article  Google Scholar 

  37. B Sonderegger, E Kozeschnik. Size dependence of the interfacial energy in the generalized nearest-neighbor broken-bond approach. Scr. Mater. 60(8)(2009) 635–8.

    Article  Google Scholar 

  38. A Costa e Silva et al. Applications of computational thermodynamics the extension from phase equilibrium to phase transformations and other properties. CALPHAD. 31(2007) 53–74.

    Article  Google Scholar 

  39. J Hoyt, M Asta, A Karma. Atomistic and continuum modeling of dendritic solidification. Mater Sci Eng R Rep. 41(6)(2003) 121–63.

    Article  Google Scholar 

  40. Y Zhao et al. DFT study of interfacial properties ofNi/Ni3Si eutectic alloy. Appl Surf Sci. 303(2014) 205–9.

    Article  Google Scholar 

  41. M Palumbo et al. Thermodynamic modelling of crystalline unary phases. Phys Status Solidi B. 251(1)(2014) 14–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Costa e Silva, A. (2015). Importance of Interfacial Energy in Precipitation Modeling Using Computational Thermodynamics Techniques. In: TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48127-2_167

Download citation

Publish with us

Policies and ethics