Skip to main content

Influence of the Polarity on the Cleanliness Level and the Inclusion Types in the ESR Process

  • Conference paper
Proceedings of the 2013 International Symposium on Liquid Metal Processing & Casting

Abstract

This paper describes the effect of different electrical power modes on the cleanliness level and the inclusion types in the ESR material X38CrMoV5–1. Therefore selected ingots, which were remelted in an open laboratory ESR plant, were investigated with SEM (combined with EDX) and with a conventional light microscope according to ASTM E45, method D. For these investigations, ingots with two DC polarities (cathodic and anodic) and with low frequency (1 Hz) AC power supplies were remelted under (apart from the polarity) comparable remelting conditions.

The results show, that the cleaning effect of both DC polarities is lower than the one with a low frequency AC operation, whereas the cathodic DC polarity results in better cleanliness levels than the anodic one. In addition the oxygen content of the ingots shows a strong increase when remelting with the anodic DC polarity.

A strong relation between the type of the electric power supply and the inclusion types in the ESR ingots could be found. The most pronounced differences occur with the oxide-type inclusions. Thereby, the amount of the originally dominating (Al, Mg)-spinell-type-oxides is further increased when remelting with DC-, but rather eliminated in favor of Al2O3-type inclusions when DC+ polarity is used. Regarding the oxysulfide inclusions, the examined electrical set-ups lead to Al-oxysulfides as the main part, while Mg-and Ca-oxysulfides are decreased respectively eliminated. Furthermore, a significant reduction of sulfides, especially CaS was found.

A comparison with industrial ESR ingots indicates that the results gained with the laboratory ESR plant are in good agreement with or even slightly better concerning the cleanliness than larger scale 50Hz-AC remelted ingots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jäger, H. Schmelzflußelektrolyse beim Elektroschlacke-Umschmelz-Verfahren. BHM 119 (1974). 11, p. 439–446.

    Google Scholar 

  2. Jäger, H. Steuerung des Reaktionsablaufes beim Elektroschlacke-Umschmelzen durch Anwendung der Schmelzflussanalyse. Dissertation, Montanistische Hochschlue Leoben, 1973.

    Google Scholar 

  3. Dewsnap, P. and R. Schlatter. Process and Product characteristics of DC Electroslag Remelting of Alloy Steels. Proceedings of Fifth International Symposium on Electroslag and other Special Melting Technologies, Oct. 16–18, 1974, Carnegie-Mellon Institute, Pittsburgh/USA p. 91ff.

    Google Scholar 

  4. Schlatter, R. Application of the electroflux remelting process for high speed tool steels. Iron and Steel International (1974), p. 197–204.

    Google Scholar 

  5. Schlatter, R. Electroflux Remelting of Alloy tool Steels. Proceedings of the 3rd International Symposium on Electroslag and other Special Melting Technologies. June 8–10 1971, Carnegie-Mellon-Institute, Pittsburgh/USA.

    Google Scholar 

  6. Schlatter, R. Electroflux Remelting of Tool Steels. Metals Engineering Quarterly 12 (1972), 1, p. 48–60.

    Google Scholar 

  7. Chang, L., X. Shi, H. Yang and Z. Li. Effect of Low-Frequency AC Power Supply During Electroslag Remelting on Qualities of Alloy Steel. Journal of Iron and Steel Research, International. (2009), 16, p. 7–11

    Article  Google Scholar 

  8. Kawakami, M, T. Takenaka and M. Ishikawa. Electrode reactions in dc electroslag remelting of steel rod. Ironmaking and Steelmaking 29, (2002), p. 287–292.

    Article  Google Scholar 

  9. Li, Z. and Q. Wang. The effect of electroslag refining on inclusioni compositions of ball-bearing steels. Proceedings of the 1986 Vacuum Metallurgy Conference on Speciality Metals, Melting and Processing, June 09.–11. 1986; Pittsburgh/USA, Published 1987; ISBN 09322897088, p. 147–153.

    Google Scholar 

  10. Vacugov, G.A. und G.A. Antropova. Zusammensetzung und Verteilung nichtmetallischer Einschlüsse im Block aus elektroschlacken-umgeschmolzenem Stahl SCh15. Stal in Deutsch, (1966), 6, p. 553ff.

    Google Scholar 

  11. Boucher, A. Electroslag Remelting trials in an inert atmosphere influence on the purity of a low alloy steel. Proceedings of the Conference on Special Electrometallurgy, Kiev, 1972, Part 2. Publisher: Naukova Dumka, p. 47–62.

    Google Scholar 

  12. Schumann, R., U. Biebricher, H. Scholz. Inert Gas ESR Produces Clean, Homogeneous Large Forging Ingots. Industrial Heating. (2001), p. 39–42.

    Google Scholar 

  13. Koch, F., P. Würzinger and R. Schneider. Advanced Equipment for the Economic Production of Speciality Steels and Alloys. Compendium of the 4th Symposium on “Advanced Technologies and Processes for Metals and Alloys”, June 16.–17. 1999, Frankfurt/Germany, p. 47–50.

    Google Scholar 

  14. Hoyle, G. Electroslag Processes — Principles and Practice. Essex/UK: Applied Science Publishers, 1983. ISBN 0–85334–164–8, p. 15–19, 99–107.

    Google Scholar 

  15. Duckworth, W.E. and G. Hoyle. Electroslag Refining. London/UK: Chapman and Hall, 1969.

    Google Scholar 

  16. Holzgruber, W. und E. Plöckinger. Das Elektroschlacke-Umschmelzen — ein neues Verfahren zur Verbesserung der Qualität von Edelstählen. Berg- und Hüttenmännische Monatshefte 113 (1968), 3, p. 83–93.

    Google Scholar 

  17. Holzgruber, W. und E. Plöckinger. Metallurgische und verfahrenstechnische Grundlagen des Elektroschlacke-Umschmelzens von Stahl. Stahl und Eisen 88 (1968), 12, p. 638–648.

    Google Scholar 

  18. Ayman, F., A. Azza, E.F. Hoda and E. Mamdouh. Behaviour of precipitates and inclusions during ESR of nitrogen alloyed and conventional AISI M41 high speed steels. Steel Grips 4 (2006), 4, p. 298–304.

    Google Scholar 

  19. Klujev, M.M. und V.M. Spicberg. Abscheidung und Bildung nichtmetallischer Einschlüsse im Metall beim Elektroschlacke-Umschmelzverfahren. Stal in Deutsch, (1969), 6, p. 590–594.

    Google Scholar 

  20. Paton, B.E., B.I. Medovar, Ju.V. Latas, B.I. Maksimovic und L.M. Stupak. Gegenwärtiger Stand und weitere Perspektiven des Elektroschlacke-Umschmelzens. Stal in Deutsch, (1963), 5, p. 487–492.

    Google Scholar 

  21. Kay, D.A.R. and J.R. Pomfret. Removal of oxide inclusions during AC electroslag remelting. Journal of The Iron and Steel Institute. (1971), p. 962–965.

    Google Scholar 

  22. National Materials Advisory Board — Commission on Sociotechnical Systems, National Research Council. Publication NM AB-324: Electroslag Remelting and Plasma Arc Melting. Washington, D.C./USA : National Academy of Sciences, 1976.

    Google Scholar 

  23. Peover, M.E. Electroslag Remelting: A Review of Electrical and Electrochemicasl Aspects. Journal of the Institute of Metals 100 (1972), p. 97–106.

    Google Scholar 

  24. Schneider, R., A. Paar, P. Zeller, G. Reiter, W. Schützenhöfer and P. Würzinger. Aufbau und Inbetriebnahme einer Versuchs-ESU-Anlage. Berg- und Hüttenmännische Monatshefte 156 (2011), 3, p. 112–118.

    Article  Google Scholar 

  25. Paar, A., R. Schneider, P. Zeller, G. Reiter, P. Würzinger, M. Wöls and S. Paul. Einfluss ausgewählter elektrischer Parameter auf den Elektroschlacke-Umschmelzprozess. Proceedings of the 19th International Student’s Day of Metallurgy, March 15–17 2012, Freiberg/Germany, p. 49–56.

    Google Scholar 

  26. Wacker Chemie AG. Wacker Silicones — Electroflux. Munich/Germany : Wacker Chemie AG.

    Google Scholar 

  27. Witek, C., E. Kaliszewski, J. Gepfert und G. Hansel. Einfluß des Elektroschlacke- und Vakuum-Umschmelzens auf die Qualität von Wälzlagerstählen. Stahl und Eisen, (1980), p. 32–48.

    Google Scholar 

  28. Jäger, H., P. Machner, O. Daghofer and P. Steinbach. Einsatz des ESU-Verfahrens zur wirtschaftlichen Herstellung von Kaltwalzen mit gesteigerter Güte. Berg- und Hüttenmännische Monatshefte 123 (1978), 9, p. 290–301.

    Google Scholar 

  29. Randak, A., A. Stanz and W. Verderber. Eigenschaften von nach Sonderschmelzverfahren hergestellten Werkzeug- und Wälzlagerstählen. Stahl und Eisen 92 (1972), 20, p. 981–993.

    Google Scholar 

  30. Schneider, R., F. Koch and P. Würzinger. Metallurgical advances in Pressure-Electro-Slag-Remelting (PESR). Proceedings of the International Symposium on Liquid Metal Processing and Casting 2001, Sept. 23–26 2001, Santa Fe/USA, p. 105–117.

    Google Scholar 

  31. Korp, J. Einfluss der Schmelzrate auf die Charakteristiken nichtmetallischer Einschlüsse beim Elektroschlacke-Umschmelzen unter Schutzgas. Berg- und Hüttenmännische Monatshefte 157 (2012), 5, p. 174–180.

    Article  Google Scholar 

  32. Liddle, J. F. Removal of Inclusions during Electroslag Refining. Proceedings of the International Symposium on Chemical Metallurgy of Iron and Steel, (1973), p. 66–74.

    Google Scholar 

  33. Trenkler, H. und W. Krieger. Gmelin-Durrer “Metallurgy of Iron” — Volume 9a/b “Practice of Steelmaking 3”. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 4th Edition (1988), p. 202a-206a, 220a-258a, 178b-208b.

    Google Scholar 

  34. Beiler, C., M. Schwarz, H.-P. Jung and O. Ziegelmayer. Einfluss- und Einstellgrößen auf den Reinheitsgrad bei hochlegierten Stahlwerkstoffen. Stahl und Eisen 132 (2012), 11, p. 83–89.

    Google Scholar 

  35. ASTM E45: 2010 — Standard Test Methods for Determining the Inclusion Content of Steel.

    Google Scholar 

  36. Knüppel, H. Desoxydation und Vakuumbehandlung von Stahlschmelzen. Düsseldorf/Germany: Verlag Stahleisen GmbH, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Paar, A. et al. (2013). Influence of the Polarity on the Cleanliness Level and the Inclusion Types in the ESR Process. In: Krane, M.J.M., Jardy, A., Williamson, R.L., Beaman, J.J. (eds) Proceedings of the 2013 International Symposium on Liquid Metal Processing & Casting. Springer, Cham. https://doi.org/10.1007/978-3-319-48102-9_4

Download citation

Publish with us

Policies and ethics