Skip to main content

Living on Cold Substrata: New Insights and Approaches in the Study of Microphytobenthos Ecophysiology and Ecology in Kongsfjorden

  • Chapter
  • First Online:
The Ecosystem of Kongsfjorden, Svalbard

Abstract

Organisms in shallow waters at high latitudes are under pressure due to climate change. These areas are typically inhabited by microphytobenthos (MPB) communities, composed mainly of diatoms. Only sparse information is available on the ecophysiology and acclimation processes within MPBs from Arctic regions. The physico-chemical environment and the ecology and ecophysiology of benthic diatoms in Kongsfjorden (Svalbard, Norway) are addressed in this review. MPB biofilms cover extensive areas of sediment. They show high rates of primary production, stabilise sediment surfaces against erosion under hydrodynamic forces, and affect the exchange of oxygen and nutrients across the sediment-water interface. Additionally, this phototrophic community represents a key component in the functioning of the Kongsfjorden trophic web, particularly as a major food source for benthic suspension- or deposit-feeders.

MPB in Kongsfjorden is confronted with pronounced seasonal variations in solar radiation, low temperatures, and hyposaline (meltwater) conditions in summer, as well as long periods of ice and snow cover in winter. From the few data available, it seems that these organisms can easily cope with these environmental extremes. The underlying physiological mechanisms that allow growth and photosynthesis to continue under widely varying abiotic parameters, along with vertical migration and heterotrophy, and biochemical features such as a pronounced fatty-acid metabolism and silicate incorporation are discussed. Existing gaps in our knowledge of benthic diatoms in Kongsfjorden, such as the chemical ecology of biotic interactions, need to be filled. In addition, since many of the underlying molecular acclimation mechanisms are poorly understood, modern approaches based on transcriptomics, proteomics, and/or metabolomics, in conjunction with cell biological and biochemical techniques, are urgently needed.

Climate change models for the Arctic predict other multifactorial stressors, such as an increase in precipitation and permafrost thawing, with consequences for the shallow-water regions. Both precipitation and permafrost thawing are likely to increase nutrient-enriched, turbid freshwater runoff and may locally counteract the expected increase in coastal radiation availability. So far, complex interactions among factors, as well as the full genetic diversity and physiological plasticity of Arctic benthic diatoms, have only rarely been considered. The limited existing information is described and discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsterberg C, Hulth S, Sundbäck K (2011) Response of a shallow-water sediment system to warming. Limnol Oceanogr 56:2147–2160

    Article  CAS  Google Scholar 

  • Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–191

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges J, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski M, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JD, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson T, Saito M, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Arrigo KR, van Dijken G (2011) Secular trends in Arctic Ocean net primary production. J Geophys Res 116:C09011. https://doi.org/10.1029/2011JC007151

    Article  Google Scholar 

  • Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35:L19603. https://doi.org/10.1029/2008GL035028

    Article  Google Scholar 

  • Attard KM, Glud RN, McGinnis DF, Rysgaard S (2014) Seasonal rates of benthic primary production in a Greenland fjord measured by aquatic eddy correlation. Limnol Oceanogr 59:1555–1569

    Article  CAS  Google Scholar 

  • Beattie A, Hirst EL, Percival E (1961) Studies on the metabolism of the Chrysophyceae. Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae. Biochem J 79:531–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Article  Google Scholar 

  • Bischof K, Hanelt D, Aguilera J, Karsten U, Vögele B, Sawall T, Wiencke C (2002) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. I. Sensitivity of photosynthesis to ultraviolet radiation. Mar Biol 140:1097–1106

    Article  CAS  Google Scholar 

  • Bischof K, Convey P, Duarte P, Gattuso J-P, Granberg M, Hop H, Hoppe C, Jiménez C, Lisitsyn L, Martinez B, Roleda MY, Thor P, Wiktor JM, Gabrielsen GW (this volume-c) Chapter 14: Kongsfjorden as harbinger of the future Arctic: knowns, unknowns and research priorities. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Brêthes J-C, Ferreyra G, de la Vega S (1994) Distribution, growth and reproduction of the limpet Nacella (Patinigera) concinna (Strebel 1908) in relation to potential food availability, in Esperanza Bay (Antarctic Peninsula). Polar Biol 14:161–170

    Article  Google Scholar 

  • Bunt JS, Lee CC (1972) Data on the composition and dark survival of four sea-ice microalgae. Limnol Oceanogr 17:458–461

    Article  CAS  Google Scholar 

  • Cahoon LB (1999) The role of benthic microalgae in neritic ecosystems. Oceanogr Mar Biol Annu Rev 37:47–86

    Google Scholar 

  • Chapman ARO, Lindley JE (1980) Seasonal growth of Laminaria longicruris in the High Arctic in relation to irradiance and dissolved nutrient concentration. Mar Biol 57:1–5

    Article  CAS  Google Scholar 

  • Christie WW (1996) Separation of phospholipid classes by high-performance liquid chromatography. In: Christie WW (ed) Advances in lipid methodology, vol 3. The Oily Press, Dundee

    Chapter  Google Scholar 

  • Corbisier TN, Monica AV, Rodrigo P, Skowronski SP, Tania A, Brito S (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): 13C stable-isotope analysis. Polar Biol 27:75–82

    Article  Google Scholar 

  • Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607. https://doi.org/10.1029/2007GL029948

    Article  Google Scholar 

  • Darley WM (1977) Biochemical compostion. In: Werner D (ed) The biology of diatoms. University of California Press, Berkeley, pp 198–233

    Google Scholar 

  • De Brouwer JFC, Wolfstein K, Ruddy GK, Jones TER, Stal LJ (2005) Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microb Ecol 49:501–512

    Article  CAS  PubMed  Google Scholar 

  • Du GY, Oak JH, Li H, Chung IK (2010) Effect of light and sediment grain size on the vertical migration of benthic diatoms. Algae 25:133–140

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW (1993) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35:155–161

    Article  Google Scholar 

  • Dunton KH (1990) Growth and production in Laminaria solidungula: relation to continuous underwater light levels in the Alaskan high Arctic. Mar Biol 106:297–304

    Article  Google Scholar 

  • Eilertsen HC, Taasen JP, Weslawski JM (1989) Phytoplankton studies in the fjords of West Spitsbergen: physical environment and production in spring and summer. J Plankton Res 11:1245–1260

    Article  Google Scholar 

  • Fredriksen S, Karsten U, Bartsch I, Woelfel J, Koblowsky M, Schumann R, Røang Moy S, Steneck B, Wiktor JM, Hop H, Wiencke C (this volume-c) Chapter 9: Biodiversity of benthic macro- and microalgae from Svalbard with special focus on Kongsfjorden. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Fryxell GA (1989) Marine phytoplankton at the Weddell Sea ice edge: seasonal changes at the specific level. Polar Biol 10:1–18

    Article  Google Scholar 

  • Fukui Y, Kobayashi M, Saito H, Oikawa H, Yano Y, Satomi M (2013) Algimonas ampicilliniresistens sp. nov., isolated from the red alga Porphyra yezoensis, and emended description of the genus Algimonas. Int J Syst Evol Microbiol 63:4407–4412

    Article  CAS  PubMed  Google Scholar 

  • Gattuso J-P, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoinne D (2006) Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3:489–513

    Article  Google Scholar 

  • Gili JM, Alva V, Pages F, Klöser H, Arntz WE (1996) Benthic diatoms as the major food source in the sub-Antarctic marine hydroid Silicularia rosea. Polar Biol 16:507–512

    Article  Google Scholar 

  • Glud RN, Risgaard-Petersen N, Thamdrup B, Fossing H, Rysgaard S (2000) Benthic carbon mineralization in a high-arctic sound. Mar Ecol Prog Ser 206:59–71

    Article  Google Scholar 

  • Glud RN, Kühl M, Wenzhöfer F, Rysgaard S (2002) Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production. Mar Ecol Prog Ser 238:15–29

    Article  Google Scholar 

  • Glud RN, Woelfel J, Karsten U, Kühl M, Rysgaard S (2009) Benthic microalgal production in the Arctic: applied methods and status of the current database. Bot Mar 52:559–571

    Article  CAS  Google Scholar 

  • Goto N, Mitamura O, Terai H (2001) Biodegradation of photosynthetically produced extracellular organic carbon from intertidal benthic algae. J Exp Mar Biol Ecol 257:73–86

    Article  CAS  PubMed  Google Scholar 

  • Graeve M, Janssen D (2009) Improved separation and quantification of neutral and polar lipid classes by HPLC-ELSD using a monolithic silica phase: application to exceptional marine lipids. J Chromatogr B 877:1815–1819

    Article  CAS  Google Scholar 

  • Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564

    Article  Google Scholar 

  • Hanelt D, Tüg H, Bischof K, Gross C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to Stratospheric Ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658

    Article  CAS  Google Scholar 

  • Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113-114:94–105

    Article  Google Scholar 

  • Hellebust JA, Lewin J (1977) Heterotrophic nutrition. In: Werner D (ed) The biology of diatoms. University of California Press, Berkeley, pp 169–197

    Google Scholar 

  • Hodal H, Falk-Petersen S, Hop H, Kristiansen S, Reigstad M (2012) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:191–203

    Article  Google Scholar 

  • Holzinger A, Kaplan F, Blaas K, Zechmann B, Komsic-Buchmann K, Becker B (2014) Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS One 9(10):e110630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalzuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Ã…, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  • Hsiao SIC (1988) Spatial and seasonal variations in primary production of sea ice microalgae and phytoplankton in Frobisher Bay, Arctic Canada. Mar Ecol Prog Ser 44:275–285

    Article  Google Scholar 

  • IPCC AR4 WG1 (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press

    Google Scholar 

  • Jakobsson MR, Macnab R, Mayer L, Andersson R, Edwards M, Hatzky J, Schenke HW, Johnson P (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analysis. Geophys Res Let 35:L07602. https://doi.org/10.1029/2008/2008g1033520

    Article  Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam

    Google Scholar 

  • Karsten U, Schumann R, Rothe S, Jung I, Medlin L (2006) Temperature and light requirements for growth of two diatom species (Bacillariophyceae) isolated from an Arctic macroalga. Polar Biol 29:476–486

    Article  Google Scholar 

  • Karsten U, Schlie C, Woelfel J, Becker B (2012) Benthic diatoms in Arctic seas – ecological functions and adaptations. Polarforschung 81:77–84

    Google Scholar 

  • Kattner G, Fricke HSG (1986) Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chromatogr 361:263–268

    Article  CAS  Google Scholar 

  • Klöser H (1994) Microphytobenthos as a food for filter feeding animals in Maxwell Bay. SCAR 6th Biology Symposium: Antarctic communities: species, structure and survival. Abstracts. SCAR, Venice, Italy, p 153

    Google Scholar 

  • Kramer F, Obleitner F, Krismer T, Kohler J, Greuell W (2013) A decade of energy and mass balance investigations on the glacier Kongsvegen, Svalbard. J Geophys Res Atmos 118:3986–4000

    Article  Google Scholar 

  • Kühl M, Glud RN, Borum R, Roberts R, Rysgaard S (2001) Photosynthetic performance of surface-associated algae below sea ice as measured with a pulse-amplitude-modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Prog Ser 223:1–14

    Article  Google Scholar 

  • Kwasniewski S, GÅ‚uchowska M, Walkusz W, Karnovsky NJ, Jakubas D, Wojczulanis-Jakubas K, Harding AMA, Goszczko I, Cisek M, BeszczyÅ„ska-Möller A, Walczowski W, Weslawski JM, Stempniewicz W (2012) Inter-annual changes in zooplankton on the West Spitsbergen Shelf in relation to hydrography, and their consequences for the diet of planktivorous seabirds. ICES J Mar Sci 69:890–901

    Article  Google Scholar 

  • Lamb MA, Lowe RL (1987) Effects of current velocity on the physical structuring of diatom (Bacillariophyceae) communities. Ohio J Sci 87:72–78

    Google Scholar 

  • Lantuit H, Overduin PP, Couture N, Wetterich S, Aré F, Atkinson D, Brown J, Cherkashov G, Drozdov D, Forbes DL, Graves-Gaylord A, Grigoriev M, Hubberten HW, Jordan J, Jorgenson T, ØdegÃ¥rd RS, Ogorodov S, Pollard W, Rachold V, Sedenko S, Solomon S, Steenhuisen F, Streletskaya I, Vasiliev A (2011) The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuar Coast 35:383–400

    Article  CAS  Google Scholar 

  • Laudien J, Herrmann M, Arntz W (2007) Soft bottom species richness and diversity as a function of depth and iceberg scour in Arctic glacial Kongsfjorden (Svalbard). Polar Biol 30:1035–1046

    Article  Google Scholar 

  • Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, Kwok R, Schweiger A, Zhang JL, Haas C, Hendricks S, Krishfield R, Kurtz N, Farrell S, Davidson M (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett 40:732–737

    Article  Google Scholar 

  • Lefauconnier B, Hagen JO, Rudant JP (1994) Flow speed and calving rate of Kongsbreen glacier, Svalbard, using SPOT images. Polar Res 13:59–65

    Article  Google Scholar 

  • Ligowski R (2000) Benthic feeding by krill, Euphausia superba Dana, in coastal waters off West Antarctica and in Admiralty Bay, South Shetland Islands. Polar Biol 23:619–625

    Article  Google Scholar 

  • Longhi ML, Schloss IR, Wiencke C (2003) Effect of irradiance and temperature on photosynthesis and growth of two Antarctic benthic diatoms, Gyrosigma subsalinum and Odontella litigiosa. Bot Mar 46:276–284

    Article  Google Scholar 

  • Longphuirt SN, Leynaert A, Guarini JM, Chauvaud L, Claquin P, Herlory O, Amice E, Huonnic P, Ragueneau O (2006) Discovery of microphytobenthos migration in the subtidal zone. Mar Ecol Prog Ser 328:143–154

    Article  CAS  Google Scholar 

  • Lyon BR, Mock T (2014) Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology 3:56–80

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald GM (2010) Global warming and the Arctic: a new world beyond the reach of the Grinnellian niche? J Exp Biol 213:855–861

    Article  CAS  PubMed  Google Scholar 

  • McGee D, Laws RA, Cahoon LB (2008) Live benthic diatoms from the upper continental slope: extending the limits of marine primary production. Mar Ecol Prog Ser 356:103–112

    Article  Google Scholar 

  • McMinn A, Martin A (2013) Dark survival in a warming world. Proc R Soc B 280(1755):20122909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQuoid MR, Hobson LA (1996) Diatom resting stages. J Phycol 32:889–902

    Article  Google Scholar 

  • Menard H, Smith SM (1966) Hypsometry of ocean basin provinces. J Geophys Res 71:4305–4325

    Article  Google Scholar 

  • Nordbäck J, Lundberg E, Christie WW (1998) Separation of lipid classes from marine particulate material by HPLC on a polyvinyl alcohol-bonded stationary phase using dual-channel evaporative light-scattering detection. Mar Chem 60:165–175

    Article  Google Scholar 

  • Overland JE, Wang M, Walsh JE, Stroeve JC (2014) Future Arctic climate changes: adaptation and mitigation time scales. Earths Future 2:68–74

    Article  Google Scholar 

  • Palmisano AC, Sullivan CW (1982) Physiology of sea ice diatoms. I. Response of three polar diatoms to a simulated summer-winter transition. J Phycol 18:489–498

    Article  Google Scholar 

  • Palmisano AC, Sullivan CW (1983) Physiology of sea ice diatoms. II. Dark survival of three polar diatoms. Can J Microbiol 29:157–160

    Article  Google Scholar 

  • Palmisano AC, Sullivan CW (1985) Growth, metabolism, and dark survival in sea ice microalgae. In: Horner RA (ed) Sea Ice Biota. CRC Press, Boca Raton, pp 131–146

    Google Scholar 

  • Palmisano AC, Soohoo JB, White DC, Smith GA, Stanton GA, Burckle GR (1985) Shade adapted benthic diatoms beneath Antarctic sea ice. J Phycol 21:664–667

    Article  Google Scholar 

  • Pavlov A, Leu E, Hanelt D, Bartsch I, Karsten U, Hudson SR, Gallet J-C, Cottier F, Cohen JH, Berge J, Johnsen G, Maturilli M, Kowalczuk P, Sagan S, Meler J, Granskog MA (this volume-d) Chapter 5: Underwater light regime in Kongsfjorden and its ecological implications. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Pavlova O, Gerland S, Hop H (this volume-d) Chapter 4: Changes in sea-ice extent and thickness in Kongsfjorden, Svalbard (2003–2016). In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Peters E, Thomas DN (1996) Prolonged darkness and diatom mortality I: marine antarctic species. J Exp Mar Biol Ecol 207:25–41

    Article  Google Scholar 

  • Petrowski S, Molis M, Schachtl K, Buschbaum C (2016) Do bioturbation and consumption affect coastal Arctic marine soft-bottom communities? Polar Biol 39:2141–2153

    Article  Google Scholar 

  • Piepenburg D, Blackburn TH, von Dorrien CF, Gutt J, Hall POJ, Hulth S, Kendall MA, Opalinski KW, Rachor E, Schmid MK (1995) Partitioning of benthic community respiration in the Arctic (northwestern Barents Sea). Mar Ecol Prog Ser 118:199–213

    Article  Google Scholar 

  • Polyakov IV, Beszczynska A, Carmack EC, Dmitrenko IA, Fahrbach E, Frolov IE, Gerdes R, Hansen E, Holfort J, Ivanov VV, Johnson MA, Karcher M, Kauker F, Morison J, Orvik KA, Schauer U, Simmons HL, Skagseth Ø, Sokolov VT, Steele M, Timokhov LA, Walsh D, Walsh JE (2005) One more step toward a warmer Arctic. Geophys Res Lett 32:L17605

    Article  Google Scholar 

  • Risgaard-Petersen N, Rysgaard S, Nielsen LP, Revsbech NP (1994) Diurnal variation of dentrification and nitrification in sediments colonized by benthic microphytes. Limnol Oceanogr 39:573–579

    Article  CAS  Google Scholar 

  • Rysgaard S, Thamdrup B, Risgaard-Petersen N, Fossing H, Berg P, Bondo PB, Dalsgaard T (1998) Seasonal carbon and nutrient mineralisation in a high-Arctic coastal marine sediment, Young Sound, NE Greenland. Mar Ecol Prog Ser 175:261–276

    Article  CAS  Google Scholar 

  • Rysgaard S, Nielsen TG, Hansen BW (1999) Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, NE Greenland. Mar Ecol Prog Ser 179:13–25

    Article  CAS  Google Scholar 

  • Rysgaard S, Kühl M, Glud RN, Würgler Hansen J (2001) Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland). Mar Ecol Prog Ser 223:15–26

    Article  Google Scholar 

  • Salleh S, McMinn A (2011) Photosynthetic response and recovery of Antarctic marine benthic microalgae exposed to elevated irradiances and temperatures. Polar Biol 34:855–869

    Article  Google Scholar 

  • Schaub I, Wagner H, Graeve M, Karsten U (2017) Effects of prolonged darkness and temperature on the lipid metabolism in the benthic diatom Navicula perminuta from the Arctic Adventfjorden, Svalbard. Polar Biol 40:1425–1439

    Article  Google Scholar 

  • Schlie C, Karsten U (2017) Microphytobenthic diatoms isolated from the Arctic Adventfjorden (Svalbard) – growth as function of temperature. Polar Biol 40:1043–1051

    Article  Google Scholar 

  • Schlie C, Woelfel J, Rüdiger F, Schumann R, Karsten U (2011) Ecophysiological performance of benthic diatoms from arctic waters. In: Seckbach J, Kociolek P (eds) The diatom world. Cellular origin, life in extreme habitats and astrobiology, vol 19. Springer, Berlin, pp 425–436

    Google Scholar 

  • Sejr MK, Jensen KT, Rysgaard S (2000) Macrozoobenthic structure in a high-Arctic east Greenland fjord. Polar Biol 23:792–801

    Article  Google Scholar 

  • Serreze MC, Francis JA (2006) The Arctic on the fast track of change. Weather 61:65–69

    Article  Google Scholar 

  • Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536

    Article  CAS  PubMed  Google Scholar 

  • Sevilgen DS, de Beer D, Al-Handal AY, Brey T, Polerecky L (2014) Oxygen budgets in subtidal arctic (Kongsfjorden, Svalbard) and temperate (Helgoland, North Sea) microphytobenthic communities. Mar Ecol Prog Ser 504:27–42

    Article  CAS  Google Scholar 

  • Shimizu K, Del Amo Y, Brzezinski MA, Stucky GD, Morseemail DE (2001) A novel fluorescent silica tracer for biological silicification studies. Chem Biol 8:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Smith AE, Morris I (1980) Synthesis of lipid during photosynthesis by phytoplankton of the southern ocean. Science 207:197–199

    Article  CAS  PubMed  Google Scholar 

  • Stachura-Suchoples K, Enke N, Schlie C, Schaub I, Karsten U, Jahn R (2016) Contribution towards a molecular taxonomic reference library of Arctic benthic marine diatoms from Kongsfjorden. Polar Biol 39:1933–1956

    Article  Google Scholar 

  • Sukenik A, Wahnon R (1991) Biochemical quality of marine unicellular algae with special emphasis on lipid-composition. I. Isochrysis galbana. Aquaculture 97:61–72

    Article  CAS  Google Scholar 

  • Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden – Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Google Scholar 

  • Thomas DN, Fogg GE, Convey P, Fritsen CH, Gili JM, Gradinger R, Laybourn-Parry J, Reid K, Walton DWH (2008) The biology of polar regions. Oxford, Oxford University Press, 394 p

    Google Scholar 

  • Torstensson A, Chierici M, Wulff A (2012) The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa. Polar Biol 35:205–214

    Article  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43

    Article  CAS  PubMed  Google Scholar 

  • Veldhuis MJW, Cucci TL, Sieracki ME (1997) Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J Phycol 33:527–541

    Article  CAS  Google Scholar 

  • Wagner H, Liu Z, Langner U, Stehfest K, Wilhelm C (2010) The use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae. J Biophotonics 3:557–566

    Article  CAS  PubMed  Google Scholar 

  • Wagner H, Jungandreas A, Fanesi A, Wilhelm C (2014) Surveillance of C-allocation in microalgal cells. Meta 4:453–464

    Google Scholar 

  • Walsby AE (1997) Numerical integration of phytoplankton photosynthesis through time and depth in a water column. New Phytol 136:189–209

    Article  CAS  Google Scholar 

  • Wiencke C (ed) (2004) The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research performed at the Koldewey Station in the years 1991–2003. Ber Polarforsch Meeresforsch 492:1–244

    Google Scholar 

  • Wiencke C, tom Dieck I (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar Ecol Prog Ser 59:157–170

    Article  Google Scholar 

  • WÅ‚odarska-Kowalczuk M, WÄ™slawski JM, Kotwicki L (1998) Spitsbergen glacial bays macrobenthos – a comparative study. Polar Biol 20:66–73

    Article  Google Scholar 

  • Woelfel J, Schumann R, Leopold P, Wiencke C, Karsten U (2009) Microphytobenthic biomass along gradients of physical conditions in Arctic Kongsfjorden, Svalbard. Bot Mar 52:573–583

    Article  CAS  Google Scholar 

  • Woelfel J, Schumann R, Peine F, Flohr A, Flohr A, Kruss A, Tegowski J, Blondel P, Wiencke C, Karsten U (2010) Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line. Polar Biol 33:1239–1253

    Article  Google Scholar 

  • Woelfel J, Eggert A, Karsten U (2014) Marginal impacts of rising temperature on Arctic benthic microalgae production based on in situ measurements and modelled estimates. Mar Ecol Prog Ser 501:25–40

    Article  CAS  Google Scholar 

  • Wulff A, Roleda MY, Zacher K, Wiencke C (2008) Exposure to sudden light burst after prolonged darkness – a case study on benthic diatoms in Antarctica. Diat Res 23:519–532

    Article  Google Scholar 

  • Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of benthic micro- and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–507

    Article  Google Scholar 

  • Zacher K, Hanelt D, Wiencke C, Wulff A (2007) Grazing and UV radiation effects on an Antarctic intertidal microalgal assemblage – a long-term field study. Polar Biol 30:1203–1212

    Article  Google Scholar 

  • Zhang Q, Gradinger R, Spindler M (1998) Dark survival of marine microalgae in the high Arctic (Greenland Sea). Polarforschung 65:111–116

    Google Scholar 

  • Zhang JL, Lindsay R, Schweiger A, Rigor I (2012) Recent changes in the dynamic properties of declining Arctic sea ice: a model study. Geophys Res Lett 39. https://doi.org/10.1029/2012GL053545

Download references

Acknowledgements

Part of this study was performed at the Ny-Ã…lesund International Arctic Environmental Research and Monitoring Facility, under the agreement on scientific cooperation between the Alfred Wegener Institute and the University of Rostock. The authors thank the crew at the AWIPEV-base in Ny-Ã…lesund, the German dive team (P. Leopold, M. Schwanitz, I. Vieweg), and P. Kumm (workshop of the Institute of Chemistry, University of Rostock) for assistance in the field and technical equipment. Financing and logistical support of the research in Ny-Ã…lesund was kindly provided by the European Centre for Arctic Environmental Research (ARCFAC V; project no. 026129-02). Furthermore, we gratefully acknowledge financial support by the German Research Council in the framework of the Priority Programme 1158 (DFG, KA899/12-1/2/3, KA899/15-1/2/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Karsten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karsten, U. et al. (2019). Living on Cold Substrata: New Insights and Approaches in the Study of Microphytobenthos Ecophysiology and Ecology in Kongsfjorden. In: Hop, H., Wiencke, C. (eds) The Ecosystem of Kongsfjorden, Svalbard. Advances in Polar Ecology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-46425-1_8

Download citation

Publish with us

Policies and ethics