Skip to main content

Visual Target Tracking Using a Low-Cost Methodology Based on Visual Words

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9972))

Included in the following conference series:

Abstract

The paper discusses methodology and presents preliminary results of a low-cost method for visual tracking (in an exemplary setup consisting of a mobile agent, e.g. a drone, with an on-board that follows a mobile ground object randomly changing its location). In general, a well-known concept of keypoint-based image representation and matching has been applied. However, the proposed techniques have been simplified so that the future system can be prospectively installed on board of low-cost drones (or other similarly inexpensive agents). The main modifications include: (1) target localization based on statistical approximations, (2) simplified vocabulary building (and quantization of descriptors into visual words), and (3) a prospective use of dedicated hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bay, H., Ess, A., Tuytelaars, T., Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Cai, S., Liu, L., Yin, S., Zhou, R., Zhang, W., Wei, S.: Optimization of speeded-up robust feature algorithm for hardware implementation. Sci. China Inf. Sci. 57(4), 1–15 (2014)

    Article  Google Scholar 

  3. Chum, O., Perdoch, M., Matas, J.: Geometric min-hashing: Finding a (thick) needle in a haystack. In: Proceedings of the IEEE Conference CVPR 2009, pp. 17–24 (2009)

    Google Scholar 

  4. Cornelis, N., Gool, L.V.: Fast scale invariant feature detection and matching on programmable graphics hardware. In: Proceedings of the IEEE Computer Vision and Pattern Recognition Workshops, CVPRW 2008, pp. 1–8. Anchorage (Alaska) (2008)

    Google Scholar 

  5. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Proceedings of the 4th European Conference on Computer Vision (ECCV 1996), pp. 683–695. Cambridge (UK) (1996)

    Google Scholar 

  6. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. SMC Part C Appl. Rev. 34(3), 334–352 (2004)

    Google Scholar 

  7. Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87(3), 316–336 (2010)

    Article  MathSciNet  Google Scholar 

  8. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22, 761–767 (2004)

    Article  Google Scholar 

  11. MBZIRC: http://www.mbzirc.com/. Accessed 20 Apr 2016

  12. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)

    Article  Google Scholar 

  13. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vis. 65, 43–72 (2005)

    Article  Google Scholar 

  14. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the IEEE Conference on CVPR 2006, vol. 2, pp. 2161–2168 (2006)

    Google Scholar 

  15. Paradowski, M., Śluzek, A.: Local keypoints and global affine geometry: triangles and ellipses for image fragment matching. In: Kwaśnicka, H., Jain, L.C. (eds.) Innovations in Intelligent Image Analysis. SCI, vol. 339, pp. 195–224. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Pinho, R., Tavares, J.: Tracking features in image sequences with kalman filtering, global optimization, mahalanobis distance and a management model. Comput. Model. Eng. Sci. 46(1), 51–75 (2009)

    MATH  Google Scholar 

  17. Pinho, R., Tavares, J., Correia, M.: A movement tracking management model with kalman filtering, global optimization techniques and mahalanobis distance. Lect. Ser. Comput. Comput. Sci. 4A, 463–466 (2005)

    Google Scholar 

  18. Salahat, E., Saleh, H., Sluzek, A., Al-Qutayri, M., Mohammad, B., Elnaggar, M.: Architecture and method for real-time parallel detection and extraction of maximally stable extremal regions (msers). U.S. Patent 9311555, April 2016

    Google Scholar 

  19. Schmid, C., Mohr, R.: Object recognition using local characterization and semi-local constraints. Technical report, INRIA (1996)

    Google Scholar 

  20. Śluzek, A.: Visual detection of objects by mobile agents using cbvir techniques of low complexity. In: Proceedings of the FedCSIS 2015 (Annals of Computer Science and Information Systems), vol. 5, pp. 241–246 (1996)

    Google Scholar 

  21. Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: An experimental survey. IEEE Trans. PAMI 36(7), 1442–1468 (2014)

    Article  Google Scholar 

  22. Stewénius, H., Gunderson, S., Pilet, J.: Size matters: Exhaustive geometric verification for image retrieval. In: Proceedings of the ECCV 2012, vol. II, pp. 674–687. Florence (2012)

    Google Scholar 

  23. Tell, D., Carlsson, S.: Combining appearance and topology for wide baseline matching. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 68–81. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Think-Science-Fair: http://www.thinkscience.ae/en/join/. Accessed 10 May 2016

  25. Vedaldi, A., Zisserman, A.: http://www.robots.ox.ac.uk/vgg/practicals/instance-recognition/index.html. Accessed 20 Apr 2016

  26. Wolfson, H., Rigoutsos, I.: Geometric hashing: An overview. IEEE Comp. Sci. Eng. 4(4), 10–21 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Ĺšluzek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ĺšluzek, A., Alali, A., Alzaabi, A., Aljasmi, A. (2016). Visual Target Tracking Using a Low-Cost Methodology Based on Visual Words. In: Chmielewski, L., Datta, A., Kozera, R., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2016. Lecture Notes in Computer Science(), vol 9972. Springer, Cham. https://doi.org/10.1007/978-3-319-46418-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46418-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46417-6

  • Online ISBN: 978-3-319-46418-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics