Regenerative Engineering of the Anterior Cruciate Ligament

  • Paulos Y. Mengsteab
  • Mark McKenna
  • Junqiu Cheng
  • Zhibo Sun
  • Cato T. Laurencin
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)


Anterior cruciate ligament (ACL) injuries, both acute and chronic, are common in sport injuries. The presence of the synovial fluid in the knee joint inhibits the spontaneous healing of the ACL, thus requiring surgical intervention. Although current methods to reconstruct the ACL can stabilize the knee joint, the progression of osteoarthritis is not halted. This chapter describes the current clinical methods to reconstruct an injured ACL and new methods to enhance the healing process. Three therapeutic strategies will be discussed in this chapter on the repair of ACL: (1) single bundle versus double bundle surgical techniques, (2) biodegradable matrices for ACL repair, and (3) biological adjuvants to enhance ACL repair. These strategies are promising clinically translatable methods to allow patients to return to normal activity levels and to alleviate pain and discomfort caused by osteoarthritis.


Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Posterior Cruciate Ligament Platelet Rich Plasma Tibial Tunnel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nau T, Teuschl A (2015) Regeneration of the anterior cruciate ligament: current strategies in tissue engineering. World J Orthop 6:127–36. doi: 10.5312/wjo.v6.i1.127
  2. 2.
    Simon D et al (2015) The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv Orthop 2015:1–11CrossRefGoogle Scholar
  3. 3.
    Laurencin CT, Freeman JW (2005) Ligament tissue engineering: An evolutionary materials science approach. Biomaterials 26:7530–7536CrossRefGoogle Scholar
  4. 4.
    Duthon VB et al (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14:204–213CrossRefGoogle Scholar
  5. 5.
    Dienst M, Burks RT, Greis PE (2002) Anatomy and biomechanics of the anterior cruciate ligament. Orthop Clin North Am 33:605–620CrossRefGoogle Scholar
  6. 6.
    Woo SL-Y, Wu C, Dede O, Vercillo F, Noorani S (2006) Biomechanics and anterior cruciate ligament reconstruction. J Orthop Surg Res 1:2CrossRefGoogle Scholar
  7. 7.
    Dargel J et al (2007) Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strateg Trauma Limb Reconstr 2:1–12CrossRefGoogle Scholar
  8. 8.
    Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH (2006) Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 14:982–992CrossRefGoogle Scholar
  9. 9.
    Freeman JW, Woods MD, Laurencin CT (2007) Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech 40:2029–2036CrossRefGoogle Scholar
  10. 10.
    Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532CrossRefGoogle Scholar
  11. 11.
    Shaw HM, Benjamin M (2007) Structure-function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports 17:303–315CrossRefGoogle Scholar
  12. 12.
    Benjamin M et al (2006) Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 208:471–490CrossRefGoogle Scholar
  13. 13.
    Huang AH, Lu HH, Schweitzer R (2015) Molecular regulation of tendon cell fate during development. J Orthop Res 33:800–812CrossRefGoogle Scholar
  14. 14.
    Pearse RV, Esshaki D, Tabin CJ, Murray MM (2009) Genome-wide expression analysis of intra- and extraarticular connective tissue. J Orthop Res 27:427–434CrossRefGoogle Scholar
  15. 15.
    Wenk MB, Midwood KS, Schwarzbauer JE (2000) Tenascin-C suppresses rho activation. J Cell Biol 150:913–920CrossRefGoogle Scholar
  16. 16.
    Majima T et al (2000) Compressive compared with tensile loading of medial collateral ligament scar in vitro uniquely influences mRNA levels for aggrecan, collagen type II, and collagenase. J Orthop Res 18:524–531CrossRefGoogle Scholar
  17. 17.
    Steiner ME, Murray MM, Rodeo SA (2008) Strategies to improve anterior cruciate ligament healing and graft placement. Am J Sports Med 36:176–189CrossRefGoogle Scholar
  18. 18.
    Takahashi M, Doi M, Abe M, Suzuki D, Nagano A (2006) Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 34:787–792CrossRefGoogle Scholar
  19. 19.
    Yagi M et al (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666Google Scholar
  20. 20.
    Koga H et al (2015) Mid- to long-term results of single-bundle versus double-bundle anterior cruciate ligament reconstruction: randomized controlled trial. Arthroscopy 31:69–76CrossRefGoogle Scholar
  21. 21.
    Leong NL, Petrigliano FA, McAllister DR (2014) Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A 102:1614–1624CrossRefGoogle Scholar
  22. 22.
    Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 216–231.
  23. 23.
    Surrao DC, Waldman SD, Amsden BG (2012) Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering. Acta Biomater 8:3997–4006CrossRefGoogle Scholar
  24. 24.
    Dunn MG, Liesch JB, Tiku ML, Zawadsky JP (1995) Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res 29:1363–1371CrossRefGoogle Scholar
  25. 25.
    Walters VI, Kwansa AL, Freeman JW (2012) Design and analysis of braid-twist collagen scaffolds. Connect Tissue Res 53:255–266CrossRefGoogle Scholar
  26. 26.
    Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG (1998) Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res 16:414–420CrossRefGoogle Scholar
  27. 27.
    Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am 58:1074–1082Google Scholar
  28. 28.
    Altman GH et al (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141CrossRefGoogle Scholar
  29. 29.
    Woo SL-Y, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex: The effects of specimen age and orientation. Am J Sports Med 19:217–225CrossRefGoogle Scholar
  30. 30.
    Chen J et al (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67:559–570CrossRefGoogle Scholar
  31. 31.
    Irie T et al (2011) Biomechanical and histologic evaluation of tissue engineered ligaments using chitosan and hyaluronan hybrid polymer fibers: a rabbit medial collateral ligament reconstruction model. J Biomed Mater Res A 97:111–117CrossRefGoogle Scholar
  32. 32.
    Tamura H, Tsuruta Y, Tokura S (2002) Preparation of chitosan-coated alginate filament. Mater Sci Eng, C 20:143–147CrossRefGoogle Scholar
  33. 33.
    Bolton CW, Bruchman WC (1985) The GORE-TEX expanded polytetrafluoroethylene prosthetic ligament. An in vitro and in vivo evaluation. Clin Orthop Relat Res 202–213.
  34. 34.
    Schroven ITJ, Geens S, Beckers L, Lagrange W, Fabry G (1994) Experience with the Leeds-Keio artificial ligament for anterior cruciate ligament reconstruction. Knee Surg Sport Traumatol Arthrosc 2:214–218CrossRefGoogle Scholar
  35. 35.
    Kdolsky R, Reihsner R, Schabus R, Beer RJ (1994) Measurement of stress-strain relationship and stress relaxation in various synthetic ligaments. Knee Surg Sport Traumatol Arthrosc 2:47–49CrossRefGoogle Scholar
  36. 36.
    Laurencin CT, Ambrosio AM, Borden MD, Cooper JA (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1:19–46CrossRefGoogle Scholar
  37. 37.
    Lu HH et al (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26:4805–4816CrossRefGoogle Scholar
  38. 38.
    Lin VS, Lee MC, O’Neal S, McKean J, Sung KL (1999) Ligament tissue engineering using synthetic biodegradable fiber scaffolds. Tissue Eng 5:443–452CrossRefGoogle Scholar
  39. 39.
    Lo KW-H, Jiang T, Gagnon KA, Nelson C, Laurencin CT (2014) Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol 32:74–81CrossRefGoogle Scholar
  40. 40.
    Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256CrossRefGoogle Scholar
  41. 41.
    Leong NL et al (2015) In vitro and in vivo evaluation of heparin mediated growth factor release from tissue-engineered constructs for anterior cruciate ligament reconstruction. J Orthop Res 33:229–236CrossRefGoogle Scholar
  42. 42.
    Zhang M et al (2012) Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend. J Mater Sci Mater Med 23:2639–2648CrossRefGoogle Scholar
  43. 43.
    Zhang H, Hollister S (2009) Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. J Biomater Sci Polym Ed 20:1975–1993CrossRefGoogle Scholar
  44. 44.
    de Luca AC, Terenghi G, Downes S (2014) Chemical surface modification of poly-ε-caprolactone improves Schwann cell proliferation for peripheral nerve repair. J Tissue Eng Regen Med 8:153–163CrossRefGoogle Scholar
  45. 45.
    Marx RE et al (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 62:489–496CrossRefGoogle Scholar
  46. 46.
    Marx RE et al (1998) Platelet-rich plasma. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 85:638–646CrossRefGoogle Scholar
  47. 47.
    Sánchez M, Anitua E, Orive G, Mujika I, Andia I (2009) Platelet-rich therapies in the treatment of orthopaedic sport injuries. Sport Med 39:345–354CrossRefGoogle Scholar
  48. 48.
    Zhang J, Wang JH-C (2010) Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes. Am J Sports Med 38:2477–2486CrossRefGoogle Scholar
  49. 49.
    Chen L et al (2012) Autologous platelet-rich clot releasate stimulates proliferation and inhibits differentiation of adult rat tendon stem cells towards nontenocyte lineages. J Int Med Res 40:1399–1409CrossRefGoogle Scholar
  50. 50.
    Ventura A et al (2005) Use of growth factors in ACL surgery: preliminary study. J Orthop Traumatol 6:76–79MathSciNetCrossRefGoogle Scholar
  51. 51.
    Fleming BC et al (2015) Increased platelet concentration does not improve functional graft healing in bio-enhanced ACL reconstruction. Knee Surg Sport Traumatol Arthrosc 23:1161–1170CrossRefGoogle Scholar
  52. 52.
    Hutchinson ID, Rodeo SA, Perrone GS, Murray MM (2015) Can platelet-rich plasma enhance anterior cruciate ligament and meniscal repair? J Knee Surg 28:19–28CrossRefGoogle Scholar
  53. 53.
    McLellan J, Plevin S (2011) Does it matter which platelet-rich plasma we use? Equine Vet Educ 23:101–104CrossRefGoogle Scholar
  54. 54.
    Tapp H, Hanley EN, Patt JC, Gruber HE (2009) Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp Biol Med 234:1–9CrossRefGoogle Scholar
  55. 55.
    Eagan MJ et al (2012) The suitability of human adipose-derived stem cells for the engineering of ligament tissue. J Tissue Eng Regen Med 6:702–709CrossRefGoogle Scholar
  56. 56.
    Little D, Guilak F, Ruch DS (2010) Ligament-derived matrix stimulates a ligamentous phenotype in human adipose-derived stem cells. Tissue Eng Part A. doi: 10.1089/ten.tea.2009.0720 Google Scholar
  57. 57.
    Proffen BL, Haslauer CM, Harris CE, Murray MM (2012) Mesenchymal stem cells from the retropatellar fat pad and peripheral blood stimulate ACL fibroblast migration, proliferation, and collagen. Gene Expr. doi: 10.3109/03008207.2012.715701 Google Scholar
  58. 58.
    Proffen BL et al (2015) Addition of autologous mesenchymal stem cells to whole blood for bioenhanced ACL repair has no benefit in the porcine model. Am J Sports Med 43:320–330CrossRefGoogle Scholar
  59. 59.
    Spindler KP, Murray MM, Devin C, Nanney LB, Davidson JM (2006) The central ACL defect as a model for failure of intra-articular healing. J Orthop Res 24:401–406CrossRefGoogle Scholar
  60. 60.
    Murray MM, Martin SD, Martin TL, Spector M (2000) Histological changes in the human anterior cruciate ligament after rupture*. J Bone Jt Surg Am 82:1387Google Scholar
  61. 61.
    Murray MM et al (2006) Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J Orthop Res 24:820–830CrossRefGoogle Scholar
  62. 62.
    Freed AD, Doehring TC (2005) Elastic model for crimped collagen fibrils. J Biomech Eng 127:587–593CrossRefGoogle Scholar
  63. 63.
    Grytz R, Meschke G (2009) Constitutive modeling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mater 2:522–533CrossRefGoogle Scholar
  64. 64.
    Figueroa D et al (2014) Anterior cruciate ligament regeneration using mesenchymal stem cells and collagen type I scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc 22:1196–1202CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paulos Y. Mengsteab
    • 1
    • 2
    • 3
    • 4
  • Mark McKenna
    • 1
  • Junqiu Cheng
    • 2
  • Zhibo Sun
    • 2
    • 3
    • 4
  • Cato T. Laurencin
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Department of Biomedical EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.The Raymond and Beverly Sackler Center for Biomedical, Biological, Engineering, and Physical SciencesUniversity of Connecticut HealthFarmingtonUSA
  3. 3.The Institute for Regenerative EngineeringUniversity of Connecticut HealthFarmingtonUSA
  4. 4.Department of Orthopedic SurgeryUniversity of Connecticut HealthFarmingtonUSA
  5. 5.Department of Materials Science and EngineeringUniversity of ConnecticutStorrsUSA
  6. 6.Department of Chemical and Biomolecular EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations