Skip to main content

Regenerative Engineering of the Anterior Cruciate Ligament

  • Chapter
  • First Online:
Regenerative Strategies for the Treatment of Knee Joint Disabilities

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 21))

Abstract

Anterior cruciate ligament (ACL) injuries, both acute and chronic, are common in sport injuries. The presence of the synovial fluid in the knee joint inhibits the spontaneous healing of the ACL, thus requiring surgical intervention. Although current methods to reconstruct the ACL can stabilize the knee joint, the progression of osteoarthritis is not halted. This chapter describes the current clinical methods to reconstruct an injured ACL and new methods to enhance the healing process. Three therapeutic strategies will be discussed in this chapter on the repair of ACL: (1) single bundle versus double bundle surgical techniques, (2) biodegradable matrices for ACL repair, and (3) biological adjuvants to enhance ACL repair. These strategies are promising clinically translatable methods to allow patients to return to normal activity levels and to alleviate pain and discomfort caused by osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nau T, Teuschl A (2015) Regeneration of the anterior cruciate ligament: current strategies in tissue engineering. World J Orthop 6:127–36. doi:10.5312/wjo.v6.i1.127

  2. Simon D et al (2015) The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv Orthop 2015:1–11

    Article  Google Scholar 

  3. Laurencin CT, Freeman JW (2005) Ligament tissue engineering: An evolutionary materials science approach. Biomaterials 26:7530–7536

    Article  Google Scholar 

  4. Duthon VB et al (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14:204–213

    Article  Google Scholar 

  5. Dienst M, Burks RT, Greis PE (2002) Anatomy and biomechanics of the anterior cruciate ligament. Orthop Clin North Am 33:605–620

    Article  Google Scholar 

  6. Woo SL-Y, Wu C, Dede O, Vercillo F, Noorani S (2006) Biomechanics and anterior cruciate ligament reconstruction. J Orthop Surg Res 1:2

    Article  Google Scholar 

  7. Dargel J et al (2007) Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strateg Trauma Limb Reconstr 2:1–12

    Article  Google Scholar 

  8. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH (2006) Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 14:982–992

    Article  Google Scholar 

  9. Freeman JW, Woods MD, Laurencin CT (2007) Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech 40:2029–2036

    Article  Google Scholar 

  10. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532

    Article  Google Scholar 

  11. Shaw HM, Benjamin M (2007) Structure-function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports 17:303–315

    Article  Google Scholar 

  12. Benjamin M et al (2006) Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 208:471–490

    Article  Google Scholar 

  13. Huang AH, Lu HH, Schweitzer R (2015) Molecular regulation of tendon cell fate during development. J Orthop Res 33:800–812

    Article  Google Scholar 

  14. Pearse RV, Esshaki D, Tabin CJ, Murray MM (2009) Genome-wide expression analysis of intra- and extraarticular connective tissue. J Orthop Res 27:427–434

    Article  Google Scholar 

  15. Wenk MB, Midwood KS, Schwarzbauer JE (2000) Tenascin-C suppresses rho activation. J Cell Biol 150:913–920

    Article  Google Scholar 

  16. Majima T et al (2000) Compressive compared with tensile loading of medial collateral ligament scar in vitro uniquely influences mRNA levels for aggrecan, collagen type II, and collagenase. J Orthop Res 18:524–531

    Article  Google Scholar 

  17. Steiner ME, Murray MM, Rodeo SA (2008) Strategies to improve anterior cruciate ligament healing and graft placement. Am J Sports Med 36:176–189

    Article  Google Scholar 

  18. Takahashi M, Doi M, Abe M, Suzuki D, Nagano A (2006) Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 34:787–792

    Article  Google Scholar 

  19. Yagi M et al (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    Google Scholar 

  20. Koga H et al (2015) Mid- to long-term results of single-bundle versus double-bundle anterior cruciate ligament reconstruction: randomized controlled trial. Arthroscopy 31:69–76

    Article  Google Scholar 

  21. Leong NL, Petrigliano FA, McAllister DR (2014) Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A 102:1614–1624

    Article  Google Scholar 

  22. Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 216–231. http://www.ncbi.nlm.nih.gov/pubmed/1126079

  23. Surrao DC, Waldman SD, Amsden BG (2012) Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering. Acta Biomater 8:3997–4006

    Article  Google Scholar 

  24. Dunn MG, Liesch JB, Tiku ML, Zawadsky JP (1995) Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res 29:1363–1371

    Article  Google Scholar 

  25. Walters VI, Kwansa AL, Freeman JW (2012) Design and analysis of braid-twist collagen scaffolds. Connect Tissue Res 53:255–266

    Article  Google Scholar 

  26. Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG (1998) Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res 16:414–420

    Article  Google Scholar 

  27. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am 58:1074–1082

    Google Scholar 

  28. Altman GH et al (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141

    Article  Google Scholar 

  29. Woo SL-Y, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex: The effects of specimen age and orientation. Am J Sports Med 19:217–225

    Article  Google Scholar 

  30. Chen J et al (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67:559–570

    Article  Google Scholar 

  31. Irie T et al (2011) Biomechanical and histologic evaluation of tissue engineered ligaments using chitosan and hyaluronan hybrid polymer fibers: a rabbit medial collateral ligament reconstruction model. J Biomed Mater Res A 97:111–117

    Article  Google Scholar 

  32. Tamura H, Tsuruta Y, Tokura S (2002) Preparation of chitosan-coated alginate filament. Mater Sci Eng, C 20:143–147

    Article  Google Scholar 

  33. Bolton CW, Bruchman WC (1985) The GORE-TEX expanded polytetrafluoroethylene prosthetic ligament. An in vitro and in vivo evaluation. Clin Orthop Relat Res 202–213. http://europepmc.org/abstract/med/3888468

  34. Schroven ITJ, Geens S, Beckers L, Lagrange W, Fabry G (1994) Experience with the Leeds-Keio artificial ligament for anterior cruciate ligament reconstruction. Knee Surg Sport Traumatol Arthrosc 2:214–218

    Article  Google Scholar 

  35. Kdolsky R, Reihsner R, Schabus R, Beer RJ (1994) Measurement of stress-strain relationship and stress relaxation in various synthetic ligaments. Knee Surg Sport Traumatol Arthrosc 2:47–49

    Article  Google Scholar 

  36. Laurencin CT, Ambrosio AM, Borden MD, Cooper JA (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1:19–46

    Article  Google Scholar 

  37. Lu HH et al (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26:4805–4816

    Article  Google Scholar 

  38. Lin VS, Lee MC, O’Neal S, McKean J, Sung KL (1999) Ligament tissue engineering using synthetic biodegradable fiber scaffolds. Tissue Eng 5:443–452

    Article  Google Scholar 

  39. Lo KW-H, Jiang T, Gagnon KA, Nelson C, Laurencin CT (2014) Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol 32:74–81

    Article  Google Scholar 

  40. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  Google Scholar 

  41. Leong NL et al (2015) In vitro and in vivo evaluation of heparin mediated growth factor release from tissue-engineered constructs for anterior cruciate ligament reconstruction. J Orthop Res 33:229–236

    Article  Google Scholar 

  42. Zhang M et al (2012) Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend. J Mater Sci Mater Med 23:2639–2648

    Article  Google Scholar 

  43. Zhang H, Hollister S (2009) Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. J Biomater Sci Polym Ed 20:1975–1993

    Article  Google Scholar 

  44. de Luca AC, Terenghi G, Downes S (2014) Chemical surface modification of poly-ε-caprolactone improves Schwann cell proliferation for peripheral nerve repair. J Tissue Eng Regen Med 8:153–163

    Article  Google Scholar 

  45. Marx RE et al (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 62:489–496

    Article  Google Scholar 

  46. Marx RE et al (1998) Platelet-rich plasma. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 85:638–646

    Article  Google Scholar 

  47. Sánchez M, Anitua E, Orive G, Mujika I, Andia I (2009) Platelet-rich therapies in the treatment of orthopaedic sport injuries. Sport Med 39:345–354

    Article  Google Scholar 

  48. Zhang J, Wang JH-C (2010) Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes. Am J Sports Med 38:2477–2486

    Article  Google Scholar 

  49. Chen L et al (2012) Autologous platelet-rich clot releasate stimulates proliferation and inhibits differentiation of adult rat tendon stem cells towards nontenocyte lineages. J Int Med Res 40:1399–1409

    Article  Google Scholar 

  50. Ventura A et al (2005) Use of growth factors in ACL surgery: preliminary study. J Orthop Traumatol 6:76–79

    Article  MathSciNet  Google Scholar 

  51. Fleming BC et al (2015) Increased platelet concentration does not improve functional graft healing in bio-enhanced ACL reconstruction. Knee Surg Sport Traumatol Arthrosc 23:1161–1170

    Article  Google Scholar 

  52. Hutchinson ID, Rodeo SA, Perrone GS, Murray MM (2015) Can platelet-rich plasma enhance anterior cruciate ligament and meniscal repair? J Knee Surg 28:19–28

    Article  Google Scholar 

  53. McLellan J, Plevin S (2011) Does it matter which platelet-rich plasma we use? Equine Vet Educ 23:101–104

    Article  Google Scholar 

  54. Tapp H, Hanley EN, Patt JC, Gruber HE (2009) Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp Biol Med 234:1–9

    Article  Google Scholar 

  55. Eagan MJ et al (2012) The suitability of human adipose-derived stem cells for the engineering of ligament tissue. J Tissue Eng Regen Med 6:702–709

    Article  Google Scholar 

  56. Little D, Guilak F, Ruch DS (2010) Ligament-derived matrix stimulates a ligamentous phenotype in human adipose-derived stem cells. Tissue Eng Part A. doi:10.1089/ten.tea.2009.0720

    Google Scholar 

  57. Proffen BL, Haslauer CM, Harris CE, Murray MM (2012) Mesenchymal stem cells from the retropatellar fat pad and peripheral blood stimulate ACL fibroblast migration, proliferation, and collagen. Gene Expr. doi:10.3109/03008207.2012.715701

    Google Scholar 

  58. Proffen BL et al (2015) Addition of autologous mesenchymal stem cells to whole blood for bioenhanced ACL repair has no benefit in the porcine model. Am J Sports Med 43:320–330

    Article  Google Scholar 

  59. Spindler KP, Murray MM, Devin C, Nanney LB, Davidson JM (2006) The central ACL defect as a model for failure of intra-articular healing. J Orthop Res 24:401–406

    Article  Google Scholar 

  60. Murray MM, Martin SD, Martin TL, Spector M (2000) Histological changes in the human anterior cruciate ligament after rupture*. J Bone Jt Surg Am 82:1387

    Google Scholar 

  61. Murray MM et al (2006) Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J Orthop Res 24:820–830

    Article  Google Scholar 

  62. Freed AD, Doehring TC (2005) Elastic model for crimped collagen fibrils. J Biomech Eng 127:587–593

    Article  Google Scholar 

  63. Grytz R, Meschke G (2009) Constitutive modeling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mater 2:522–533

    Article  Google Scholar 

  64. Figueroa D et al (2014) Anterior cruciate ligament regeneration using mesenchymal stem cells and collagen type I scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc 22:1196–1202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mengsteab, P.Y., McKenna, M., Cheng, J., Sun, Z., Laurencin, C.T. (2017). Regenerative Engineering of the Anterior Cruciate Ligament. In: Oliveira, J., Reis, R. (eds) Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-44785-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44785-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44783-4

  • Online ISBN: 978-3-319-44785-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics