Skip to main content

Advertisement

Log in

Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, natural lecithin was incorporated into cholesterol-poly(ε-caprolactone) (Chol-PCL) by solution blending in order to modify the performance of the hydrophobic and bio-inert PCL. The fibrous Chol-PCL/lecithin membranes were fabricated by electrospinning, and the surface morphology and properties were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, and mechanical tensile testing. The blood compatibility of the scaffolds was evaluated by in vitro hemolysis assay. The cytocompatibility of the scaffolds was investigated by cell adhesion and proliferation using bone-marrow mesenchymal stem cells (MSCs). Subcutaneous implantation was also performed to evaluate the in vivo inflammatory reaction. The tubular tissue-engineered vascular graft (TEVG) was further constructed by rolling cell sheet comprising fibrous membrane and MSCs. Furthermore, endothelial cells (ECs) were seeded onto the lumen of the graft with the aim to form vascular endothelium. The preliminary results indicate that electrospun Chol-PCL/lecithin scaffolds show improved hemocompatibility and cytocompatibility compared with neat Chol-PCL, and combining the Chol-PCL/lecithin fibrous scaffold with MSCs and ECs with well controlled distribution is a promising strategy for constructing TEVGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, Lim G, van Dyke M, Czerw R, Yoo JJ, Atala A. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27:1088–94.

    Article  CAS  Google Scholar 

  2. Baguneid MS, Seifalian AM, Salacinski HJ, Murray D, Hamilton G, Walker MG. Tissue engineering of blood vessels. Br J Surg. 2006;93:282–90.

    Article  CAS  Google Scholar 

  3. Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed. 2007;46:5670–703.

    Article  CAS  Google Scholar 

  4. Woodruff MA, Hutmacher DW. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217–57.

    Article  CAS  Google Scholar 

  5. Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitzel J. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res. 2007;83A:999–1008.

    Article  CAS  Google Scholar 

  6. Pektok E, Nottelet B, Tille JC, Gurny R, Kalangos A, Moeller M, Walpoth BH. Degradation and healing characteristics of small-diameter poly(ε-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 2008;118:2563–70.

    Article  CAS  Google Scholar 

  7. Mathews S, Kaladhar K, Sharma CP. Cell mimetic monolayer supported chitosan-haemocompatibility studies. J Biomed Mater Res. 2006;79A:147–52.

    Article  CAS  Google Scholar 

  8. Nakaya T, Li YJ. Phospholipid polymers. Prog Polym Sci. 1999;24:143–81.

    Article  CAS  Google Scholar 

  9. Shi X, Wang Y, Ren L, Huang W, Wang DA. A protein/antibiotic releasing poly(lactic-co-glycolic acid)/lecithin scaffold for bone repair applications. Int J Pharm. 2009;373:85–92.

    Article  CAS  Google Scholar 

  10. McKee MG, Layman JM, Cashion MP, Long TE. Phospholipid nonwoven electrospun membranes. Science. 2006;311:353–5.

    Article  CAS  Google Scholar 

  11. Park SA, Park KE, Kim W. Preparation of sodium alginate/poly(ethylene oxide) blend nanofibers with lecithin. Macromol Res. 2010;18:891–6.

    Article  CAS  Google Scholar 

  12. Zhu N, Cui FZ, Hu K, Zhu L. Biomedical modification of poly(L-lactide) by blending with lecithin. J Biomed Mater Res. 2007;82A:455–61.

    Article  CAS  Google Scholar 

  13. Wang Y, Cui FZ, Jiao YP, Hu K, Fan DD. Modification of bone graft by blending with lecithin to improve hydrophilicity and biocompatibility. Biomed Mater. 2008;3:15012.

    Article  CAS  Google Scholar 

  14. Xu ZH, Wu QY. Effect of lecithin content blend with poly (L-lactic acid) on viability and proliferation of mesenchymal stem cells. Mater Sci Eng, C. 2009;29:1593–8.

    Article  Google Scholar 

  15. Shi X, Wang Y, Ren L, Lai C, Gong Y, Wang DA. A novel hydrophilic poly(lactide-co-glycolide)/lecithin hybrid microspheres sintered scaffold for bone repair. J Biomed Mater Res. 2010;82A:963–72.

    Google Scholar 

  16. Shen J, Fu X, Ou L, Zhang M, Guan Y, Wang K, Che Y, Kong D, Steinhof G, Li W, Yu Y, Ma N. Construction of ureteral grafts by seeding urothelial cells and bone marrow mesenchymal stem cells into polycaprolactone-lecithin electrospun fibers. Int J Artif Organs. 2010;33:161–70.

    CAS  Google Scholar 

  17. Motlagh D, Allen J, Hoshi R, Yang J, Lui K, Ameer G. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J Biomed Mater Res. 2007;82A:907–16.

    Article  CAS  Google Scholar 

  18. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400.

    Article  CAS  Google Scholar 

  19. Nerurkar NL, Sen S, Baker BM, Elliott DM, Mauck RL. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibers scaffolds. Acta Biomater. 2011;7:485–91.

    Article  CAS  Google Scholar 

  20. L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NAF, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006;12:361–5.

    Article  Google Scholar 

  21. Sales KM, Salacinski HJ, Alobaid N, Mikhail M, Balakrishnan V, Seifalian AM. Advancing vascular tissue engineering: the role of stem cell technology. Trends Biotechnol. 2005;23:461–7.

    Article  CAS  Google Scholar 

  22. Hashi CK, Zhu Y, Yang GY, Young WL, Hsiao BS, Wang K, Chu B, Li S. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci. 2007;104:11915–20.

    Article  CAS  Google Scholar 

  23. Gong Z, Niklason LE. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J. 2008;22:1635–48.

    Article  CAS  Google Scholar 

  24. Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA, Yi T, Mirensky TL, Nalbandian A, Udelsman B, Hibino N, Shinoka T, Saltzman WM, Snyder E, Kyriakides TR, Pober JS, Breuer CK. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci. 2010;107:4669–74.

    Article  CAS  Google Scholar 

  25. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.

    CAS  Google Scholar 

  26. Sarkar S, Sales KM, Hamiton G, Seifalian AM. Addressing thrombogenicity in vascular graft construction. J Biomed Mater Res. 2007;82B:100–8.

    Article  CAS  Google Scholar 

  27. Hu X, Liu G, Ji J, Fan D, Yan X. Lipid-like diblock copolymer as an additive for improving the blood compatibility of poly(lactide-co-glycolide). J Bioact Compat Polym. 2010;25:654–68.

    Article  CAS  Google Scholar 

  28. Hong Y, Ye SH, Nieponice A, Soletti L, Vorp DA, Wagner WR. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials. 2009;30:2457–67.

    Article  CAS  Google Scholar 

  29. Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J Biomed Mater Res. 1992;26:1543–52.

    Article  CAS  Google Scholar 

  30. Iwasaki Y, Tojo Y, Kurosaki T, Nakabayashi N. Reduced adhesion of blood cells to biodegradable polymers by introducing phosphorylcholine moieties. J Biomed Mater Res. 2003;65A:164–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by NSFC (Nos. 50830104 and 81000680), Research Fund for the Doctoral Program of Higher Education of China (No. 20100031120021), and Science & Technology Project of Tianjin of China (No. 12JCQNJC09300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zhao or Deling Kong.

Additional information

Min Zhang and Kai Wang contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Wang, K., Wang, Z. et al. Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend. J Mater Sci: Mater Med 23, 2639–2648 (2012). https://doi.org/10.1007/s10856-012-4721-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4721-4

Keywords

Navigation