Advertisement

Lattice Boltzmann for Advection-Diffusion Problems

  • Timm Krüger
  • Halim Kusumaatmaja
  • Alexandr Kuzmin
  • Orest Shardt
  • Goncalo Silva
  • Erlend Magnus Viggen
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

After reading this chapter, you will understand how the lattice Boltzmann equation can be adapted from flow problems to advection-diffusion problems with only small changes. These problems include thermal flows, and you will know how to simulate these as two interlinked lattice Boltzmann simulations, one for the flow and one for the thermal advection-diffusion. You will understand how advection-diffusion problems require different boundary conditions from flow problems, and how these boundary conditions may be implemented.

Keywords

Source Term Dirichlet Boundary Condition Boussinesq Approximation Collision Operator Thermal Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edn. (Wiley, New York, 1960)Google Scholar
  2. 2.
    D. Wolf-Gladrow, J. Stat. Phys. 79 (5–6), 1023 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    E.G. Flekkoy, Phys. Rev. E 47 (6), 4247 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    T. Inamuro, M. Yoshino, H. Inoue, R. Mizuno, F. Ogino, J. Comp. Phys. 179 (1), 201 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    X. Shan, Phys. Rev. E 55 (3), 2780 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    X. He, S. Chen, G.D. Doolen, J. Comput. Phys. 146 (1), 282 (1998)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Toffoli, N.H. Margolus, Physica D 45 (1-3), 229 (1990)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    I. Ginzburg, Adv. Water Resour. 28 (11), 1171 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S. Suga, Int. J. Mod. Phys. C 17 (11), 1563 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139 (6), 1090 (2010)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Li, C. Chen, R. Mei, J.F. Klausner, Phys. Rev. E 89 (4), 043308 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    H.B. Huang, X.Y. Lu, M.C. Sukop, J. Phys. A: Math. Theor. 44 (5), 055001 (2011)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Chopard, J.L. Falcone, J. Latt, Eur. Phys. J. Spec. Top. 171, 245 (2009)CrossRefGoogle Scholar
  14. 14.
    Z. Chai, T.S. Zhao, Phys. Rev. E 87 (6), 063309 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    I.V. Karlin, D. Sichau, S.S. Chikatamarla, Phys. Rev. E 88 (6), 063310 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Q. Kang, P.C. Lichtner, D. Zhang, J. Geophys. Res. 111 (B5), B05203 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    S.G. Ayodele, F. Varnik, D. Raabe, Phys. Rev. E 83 (1), 016702 (2011)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Zhang, G. Yan, Comput. Math. Appl. 69 (3), 157 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    X. Yang, B. Shi, Z. Chai, Comput. Math. Appl. 68 (12, Part A), 1653 (2014)Google Scholar
  20. 20.
    J. Kang, N.I. Prasianakis, J. Mantzaras, Phys. Rev. E 89 (6), 063310 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    T. Seta, Phys. Rev. E 87 (6), 063304 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    B. Shi, B. Deng, R. Du, X. Chen, Comput. Math. Appl. 55 (7), 1568 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    I. Ginzburg, Adv. Water Resour. 28 (11), 1196 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    S. Suga, Int. J. Mod. Phys. C 20, 633 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    H. Yoshida, M. Nagaoka, J. Comput. Phys. 229 (20), 7774 (2010)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, 1st edn. (Springer, New York, 2011)CrossRefzbMATHGoogle Scholar
  28. 28.
    R.G.M. Van der Sman, Phys. Rev. E 74, 026705 (2006)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Huang, H. Wu, Phys. Rev. E 89 (4), 043303 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Q. Li, Z. Chai, B. Shi, Comput. Math. Appl. 70 (4), 548 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    J. Perko, R.A. Patel, Phys. Rev. E 89 (5), 053309 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    X. Yang, B. Shi, Z. Chai, Phys. Rev. E 90 (1), 013309 (2014)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    B. Servan-Camas, F. Tsai, Adv. Water Resour. 31, 1113 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    I. Ginzburg, Adv. Water Resour. 51, 381 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Z. Chai, T.S. Zhao, Phys. Rev. E 90 (1), 013305 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    R. Huang, H. Wu, J. Comput. Phys. 274, 50 (2014)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    E.D. Siggia, Ann. Rev. Fluid Mech. 26, 137 (1994)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    W.H. Reid, D.L. Harris, Phys. Fluids 1 (2), 102 (1958)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    F.J. Alexander, S. Chen, J.D. Sterling, Phys. Rev. E 47 (4), R2249 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Chen, H. Ohashi, M. Akiyama, Phys. Rev. E 50 (4), 2776 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    Y.H. Qian, J. Sci. Comput. 8 (3), 231 (1993)MathSciNetCrossRefGoogle Scholar
  42. 42.
    G.R. McNamara, A.L. Garcia, B.J. Alder, J. Stat. Phys. 81 (1–2), 395 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer, New York, 2005)zbMATHGoogle Scholar
  44. 44.
    Y. Peng, C. Shu, Y.T. Chew, Phys. Rev. E 68 (2), 026701 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Z. Guo, C. Zheng, B. Shi, T.S. Zhao, Phys. Rev. E 75 (3), 036704 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    S. Chen, K.H. Luo, C. Zheng, J. Comput. Phys. 231 (24) (2012)Google Scholar
  47. 47.
    P.A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1972)zbMATHGoogle Scholar
  48. 48.
    Z. Guo, B. Shi, C. Zheng, Int. J. Numer. Meth. Fluids 39 (4), 325 (2002)MathSciNetCrossRefGoogle Scholar
  49. 49.
    T. Zhang, B. Shi, Z. Guo, Z. Chai, J. Lu, Phys. Rev. E 85 (016701), 1 (2012)Google Scholar
  50. 50.
    M. Yoshino, T. Inamuro, Int. J. Num. Meth. Fluids 43 (2), 183 (2003)CrossRefGoogle Scholar
  51. 51.
    A. Polyanin, A. Kutepov, A. Vyazmin, D. Kazenin, Hydrodynamics, Mass and Heat Transfer in Chemical Engineering (Taylor and Francis, London, 2002)Google Scholar
  52. 52.
    M. Ozisik, Heat Conduction (Wiley, New York, 1993)Google Scholar
  53. 53.
    A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 225, 580 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Timm Krüger
    • 1
  • Halim Kusumaatmaja
    • 2
  • Alexandr Kuzmin
    • 3
  • Orest Shardt
    • 4
  • Goncalo Silva
    • 5
  • Erlend Magnus Viggen
    • 6
  1. 1.School of Engineering University of EdinburghEdinburghUK
  2. 2.Department of PhysicsDurham UniversityDurhamUK
  3. 3.Maya Heat Transfer TechnologiesWestmountCanada
  4. 4.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  5. 5.IDMEC/IST, University of LisbonLisbonPortugal
  6. 6.Acoustics Research Centre, SINTEF ICTTrondheimNorway

Personalised recommendations