Skip to main content
Log in

A lattice Boltzmann equation for diffusion

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The formulation of lattice gas automata (LGA) for given partial differential equations is not straightforward and still requires “some sort of magic.” Lattice Boltzmann equation (LBE) models are much more flexible than LGA because of the freedom in choosing equilibrium distributions with free parameters which can be set after a multiscale expansion according to certain requirements. Here a LBE is presented for diffusion in an arbitrary number of dimensions. The model is probably the simplest LBE which can be formulated. It is shown that the resulting algorithm with relaxation parameter ω=1 is identical to an explicit finite-difference (EFD) formulation at its stability limit. Underrelaxation (0<ω<1) allows stable integration beyond the stability limit of EFD. The time step of the explicit LBE integration is limited by accuracy and not by stability requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. F. Ames,Numerical Methods for Partial Differential Equations (Academic Press, New York, 1977).

    Google Scholar 

  2. P. Bhatnagar, E. P. Gross, and M. K. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,Phys. Rev. 94(3):511–525 (1954).

    Google Scholar 

  3. H. Chen, and W. H. Matthaeus, New cellular automaton model for magnetohydrodynamics,Phys. Rev. Lett. 58(18):1845–1848 (1987).

    Google Scholar 

  4. S. Chen, D. O. Martinez, W. H. Matthaeus, and H. Chen, Magnetohydrodynamics computations with lattice gas automata.J. Stat. Phys. 68(3/4):533–556 (1992).

    Google Scholar 

  5. S. Chen, G. D. Doolen, and W. H. Mattheus, Lattice gas automata for simple and complex fluids,J. Stat. Phys. 64(5/6):1133–1162 (1991).

    Google Scholar 

  6. D. Dab, and J.-P. Boon, Cellular automata approach to reaction-diffusion systems, InCellular Automata and Modeling of Complex Physical Systems P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, eds. (Springer, Berlin, 1989), pp. 257–273.

    Google Scholar 

  7. D. d'Humières, P. Lallemand, and U. Frisch, Lattice gas models for 3D hydrodynamics,Europhys. Lett. 2(4):291–297 (1986).

    Google Scholar 

  8. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for Navier-Stokes equations,Phys. Rev. Lett. 56:1505–1508 (1986).

    Google Scholar 

  9. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, Lattice gas hydrodynamics in two and three dimensions,Complex Systems 1:649–707 (1987).

    Google Scholar 

  10. M. Hénon, Isometric collision rules for four-dimensional FCHC lattice gas.Complex Systems 1(3):475–494 (1987).

    Google Scholar 

  11. F. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions,Europhys. Lett. 9(4):345–349 (1989).

    Google Scholar 

  12. T. Karapiperis, and B. Blankleider, Cellular automaton model of reaction-transport processes,Physica D 78:30–64 (1994).

    Google Scholar 

  13. C. F. Kougias, Numerical simulations of small-scale oceanic fronts of river discharge type with the lattice gas automata method,J. Geophys. Res. 98(C10):18243–18255 (1993).

    Google Scholar 

  14. D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics,Phys. Fluids 6(3):1285–1298 (1994).

    Google Scholar 

  15. G. McNamara, and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata,Phys. Rev. Lett. 61:2332–2335 (1988).

    Google Scholar 

  16. D. Montgomery, and G. D. Doolen, Two cellular automata for plasma computations,Complex Systems 1:830–838 (1987).

    Google Scholar 

  17. R. Nasilowski, A cellular-automaton fluid model with simple rules in arbitrary many dimensions,J. Stat. Phys. 65(1/2):97–138 (1991).

    Google Scholar 

  18. Y. H. Qian, D. d'Humières, and P. Lallemand, Lattice BGK models for Navier-Stokes equation,Europhys. Lett. 17(6):479–484 (1992).

    Google Scholar 

  19. P. C. Rem, and J. A. Somers, Cellular automata algorithms on a transputer network, InDiscrete Kinematic Theory, Lattice Gas Dynamics, and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, Singapore, 1989), pp. 268–275.

    Google Scholar 

  20. D. H. Rothman, Cellular-automaton fluids: A model for flow in porous media.Geophysics 53(4):509–518, (1988).

    Google Scholar 

  21. D. H. Rothman, and J. M. Keller, Immiscible cellular-automaton fluids,J. Stat. Phys. 52:1119–1127 (1988).

    Google Scholar 

  22. T. Toffoli, and N. Margolus, Invertible cellular automata: A review,Physica D 45:229–253 (1990).

    Google Scholar 

  23. D. V. van Coevorden, M. H. Ernst, R. Brito, and J. A. Somers, Relaxation and transport in FCHC lattice gases.J. Stat. Phys. 74(5/6):1085–1115 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Stauffer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf-Gladrow, D. A lattice Boltzmann equation for diffusion. J Stat Phys 79, 1023–1032 (1995). https://doi.org/10.1007/BF02181215

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181215

Key Words

Navigation