Skip to main content

Mechanistic Models of Physiological Control Systems

  • Chapter
  • First Online:
Systems Pharmacology and Pharmacodynamics

Abstract

Dynamic modeling has played an important role in advancing and integrating the fields of pharmacokinetics and pharmacodynamics. However, the vast majority of models in the literature do not take into account the fact that pharmacological responses are frequently affected by the homeostatic mechanisms inherent in physiological control systems. This article provides a short tutorial presenting examples that illustrate the basic properties of closed-loop control and how these can influence model predictions of drug responses in both the steady-state and under dynamic conditions. Physiological control systems can be modeled using two basic approaches: (a) “minimal modeling”, in which all model parameters for individuals can be estimated from experiment; and (b) “structured modeling ”, in which the model parameters are isomorphic to key physiological entities, but not all can be identified from the measurements. A discussion of these two approaches is presented, along with a case study of how minimal modeling can be applied to extend a larger structured model. Finally, the importance of modeling functional linkages and interactions across organ systems and across scales is highlighted through a brief exposition of a recently developed structured model of cardiorespiratory, sleep-wake state and metabolic control .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asyali MH, Juusola M (2005) Use of meixner functions in estimation of Volterra kernels of nonlinear systems with delay. IEEE Trans Biomed Eng 52:229–237

    Article  PubMed  Google Scholar 

  • Bauer JA, Fung HL (1994) Pharmacodynamic models of nitroglycerin-induced hemodynamic tolerance in experimental heart failure. Pharm Res 11:816–823

    Article  CAS  PubMed  Google Scholar 

  • Bergman RN, Finegood DT, Ader M (1985) Assessment of insulin sensitivity in vivo. Endocr Rev 6:45–86

    Article  CAS  PubMed  Google Scholar 

  • Blasi A, Jo JA, Valladares E, Juarez R, Baydur A, Khoo MC (2006) Autonomic cardiovascular control following transient arousal from sleep: a time-varying closed-loop model. IEEE Trans Biomed Eng 53:74–82

    Article  PubMed  Google Scholar 

  • Bolton B, Carmichael EA, Sturup G (1936) Vaso-constriction following deep inspiration. J Physiol 86:83–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14:557–568

    CAS  PubMed  Google Scholar 

  • Cannon WB (1939) The wisdom of the body. Norton, New York

    Google Scholar 

  • Chaicharn J, Lin Z, Chen ML, Ward SL, Keens T, Khoo MC (2009) Model-based assessment of cardiovascular autonomic control in children with obstructive sleep apnea. Sleep 32:927–938

    PubMed  PubMed Central  Google Scholar 

  • Chalacheva P, Khoo MC (2013) An extended model of blood pressure variability: incorporating the respiratory modulation of vascular resistance. Conf Proc IEEE Eng Med Biol Soc 2013:3825–3828

    PubMed  Google Scholar 

  • Cheng L, Khoo MC (2011) Modeling the autonomic and metabolic effects of obstructive sleep apnea: a simulation study. Front Physiol 2:111

    PubMed  Google Scholar 

  • Cheng L, Ivanova O, Fan HH, Khoo MC (2010) An integrative model of respiratory and cardiovascular control in sleep-disordered breathing. Respir Physiol Neurobiol 174:4–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobelli C, Distefano JJ 3rd (1980) Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am J Physiol 239:R7–R24

    CAS  PubMed  Google Scholar 

  • Coleman TG, Randall JE (1983) HUMAN: a comprehensive physiological model. Physiologist 26:15–21

    Google Scholar 

  • Csajka C, Verotta D (2006) Pharmacokinetic-pharmacodynamic modelling: history and perspectives. J Pharmacokinet Pharmacodyn 33:227–279

    Article  CAS  PubMed  Google Scholar 

  • Danhof M, de Jongh J, De Lange EC, Della Pasqua O, Ploeger BA, Voskuyl RA (2007) Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 47:357–400

    Article  CAS  PubMed  Google Scholar 

  • deBoer RW, Karemaker JM, Strackee J (1987) Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol 253:H680–H689

    CAS  PubMed  Google Scholar 

  • Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16:176–185

    Article  CAS  PubMed  Google Scholar 

  • Francheteau P, Steimer JL, Merdjan H, Guerret M, Dubray C (1993) A mathematical model for dynamics of cardiovascular drug action: application to intravenous dihydropyridines in healthy volunteers. J Pharmacokinet Biopharm 21:489–514

    Article  CAS  PubMed  Google Scholar 

  • Gribbin B, Pickering TG, Sleight P, Peto R (1971) Effect of age and high blood pressure on baroreflex sensitivity in man. Circ Res 29:424–431

    Article  CAS  PubMed  Google Scholar 

  • Guyton AC, Coleman TG, Granger HJ (1972) Circulation: overall regulation. Annu Rev Physiol 34:13–46

    Google Scholar 

  • Hester RL, Brown AJ, Husband L, Iliescu R, Pruett D, Summers R, Coleman TG (2011) Hummod: a modeling environment for the simulation of integrative human physiology. Front Physiol 2:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Jo JA, Blasi A, Valladares EM, Juarez R, Baydur A, Khoo MC (2007) A nonlinear model of cardiac autonomic control in obstructive sleep apnea syndrome. Ann Biomed Eng 35:1425–1443

    Article  PubMed  Google Scholar 

  • Khoo MC (2008) Modeling of autonomic control in sleep-disordered breathing. Cardiovasc Eng 8:30–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Khoo MCK, IEEE Engineering in Medicine and Biology Society & Institute of Electrical and Electronics Engineers (2000) Physiological control systems: analysis, simulation, and estimation. IEEE Press, New York

    Google Scholar 

  • Khoo MC, Oliveira FM, Cheng L (2013) Understanding the metabolic syndrome: a modeling perspective. IEEE Rev Biomed Eng 6:143–155

    Article  PubMed  Google Scholar 

  • Kleinbloesem CH, van Brummelen P, Danhof M, Faber H, Urquhart J, Breimer DD (1987) Rate of increase in the plasma concentration of nifedipine as a major determinant of its hemodynamic effects in humans. Clin Pharmacol Ther 41:26–30

    Article  CAS  PubMed  Google Scholar 

  • Lederballe Pedersen O, Christensen NJ, Ramsch KD (1980) Comparison of acute effects of nifedipine in normotensive and hypertensive man. J Cardiovasc Pharmacol 2:357–366

    Article  CAS  PubMed  Google Scholar 

  • Macgregor GA, Rotellar C, Markandu ND, Smith SJ, Sagnella GA (1982) Contrasting effects of nifedipine, captopril, and propranolol in normotensive and hypertensive subjects. J Cardiovasc Pharmacol 4(Suppl 3):S358–S362

    PubMed  Google Scholar 

  • Madwed JB, Albrecht P, Mark RG, Cohen RJ (1989) Low-frequency oscillations in arterial pressure and heart rate: a simple computer model. Am J Physiol 256:H1573–H1579

    CAS  PubMed  Google Scholar 

  • Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31:510–518

    Article  CAS  PubMed  Google Scholar 

  • Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492

    Article  CAS  PubMed  Google Scholar 

  • Mandema JW, Wada DR (1995) Pharmacodynamic model for acute tolerance development to the electroencephalographic effects of alfentanil in the rat. J Pharmacol Exp Ther 275:1185–1194

    CAS  PubMed  Google Scholar 

  • Marmarelis VZ (1993) Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann Biomed Eng 21:573–589

    Article  CAS  PubMed  Google Scholar 

  • Mullen TJ, Appel ML, Mukkamala R, Mathias JM, Cohen RJ (1997) System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade. Am J Physiol 272:H448–H461

    CAS  PubMed  Google Scholar 

  • Mussalo H, Vanninen E, Ikaheimo R, Laitinen T, Laakso M, Lansimies E, Hartikainen J (2002) Baroreflex sensitivity in essential and secondary hypertension. Clin Auton Res 12:465–471

    Article  PubMed  Google Scholar 

  • Roy A, Parker RS (2006) Dynamic modeling of free fatty acid, glucose, and insulin: an extended “minimal model”. Diab Technol Ther 8:617–626

    Article  CAS  Google Scholar 

  • Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ (1991) Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol 261:H1231–H1245

    CAS  PubMed  Google Scholar 

  • Schnall RP, Shlitner A, Sheffy J, Kedar R, Lavie P (1999) Periodic, profound peripheral vasoconstriction—a new marker of obstructive sleep apnea. Sleep 22:939–946

    CAS  PubMed  Google Scholar 

  • Zuideveld KP, Maas HJ, Treijtel N, Hulshof J, van der Graaf PH, Peletier LA, Danhof M (2001) A set-point model with oscillatory behavior predicts the time course of 8-OH-DPAT-induced hypothermia. Am J Physiol Regul Integr Comp Physiol 281:R2059–R2071

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. K. Khoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Khoo, M.C.K., Hu, WH., Chalacheva, P. (2016). Mechanistic Models of Physiological Control Systems. In: Mager, D., Kimko, H. (eds) Systems Pharmacology and Pharmacodynamics. AAPS Advances in the Pharmaceutical Sciences Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-44534-2_7

Download citation

Publish with us

Policies and ethics