Advertisement

Stereotactic Radiosurgery in Pediatric Neurovascular Diseases

  • Hannah E. Goldstein
  • Stephen G. Bowden
  • Sunjay M. Barton
  • Eileen Connolly
  • Richard C. E. Anderson
  • Sean D. Lavine
Chapter

Abstract

Stereotactic radiosurgery (SRS) is an evolving approach for the treatment of pediatric neurovascular disease. Since its first use in the treatment of an arteriovenous malformation (AVM) in 1970, it has been used safely and effectively in treating adult patients with AVMs, selected cerebral cavernous malformations (CCM), and arteriovenous fistulas (AVF). More recently, several case series have shown expansion to the pediatric population that have yielded promising results, with SRS achieving total obliteration of AVMs in up to 90 % of patients. The benefits of SRS are likely greatest in lesions that are deep-seated or adjacent to eloquent cortex, where the risks of microsurgery are typically greater than the risks of SRS. The validation of risk scores, which have identified smaller AVM volume and younger age as prognosticators of radiosurgical success, has helped guide patient selection and improve outcomes overall. However, concerns of persistent hemorrhage risk during the latency period prior to obliteration, as well as limited knowledge of long-term, radiation-specific complications, continue to limit the usage of SRS for pediatric neurovascular disease.

References

  1. 1.
    Niranjan A, Lunsford LD. A brief history of arteriovenous malformation radiosurgery. Prog Neurol Surg. 2013;27:1–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Steiner L, Leksell L, Greitz T, Forster DM, Backlund EO. Stereotaxic radiosurgery for cerebral arteriovenous malformations. Report of a case. Acta Chir Scand. 1972;138:459–64.PubMedGoogle Scholar
  3. 3.
    Nataf F, Schlienger M, Lefkopoulos D, et al. Radiosurgery of cerebral arteriovenous malformations in children: a series of 57 cases. Int J Radiat Oncol Biol Phys. 2003;57:184–95.CrossRefPubMedGoogle Scholar
  4. 4.
    Altschuler EM, Lunsford LD, Coffey RJ, Bissonette DJ, Flickinger JC. Gamma knife radiosurgery for intracranial arteriovenous malformations in childhood and adolescence. Pediatr Neurosci. 1989;15:53–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Pollock BE, Flickinger JC, Lunsford LD, Maitz A, Kondziolka D. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery. 1998;42:1239–44; discussion 44–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65:476–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Pollock BE, Flickinger JC. A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg. 2002;96:79–85.CrossRefPubMedGoogle Scholar
  8. 8.
    Pollock BE, Flickinger JC. Modification of the radiosurgery-based arteriovenous malformation grading system. Neurosurgery. 2008;63:239–43; discussion 43.CrossRefPubMedGoogle Scholar
  9. 9.
    Buis DR, Dirven CM, Lagerwaard FJ, et al. Radiosurgery of brain arteriovenous malformations in children. J Neurol. 2008;255:551–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Cohen-Gadol AA, Pollock BE. Radiosurgery for arteriovenous malformations in children. J Neurosurg. 2006;104:388–91.PubMedGoogle Scholar
  11. 11.
    Zabel-du Bois A, Milker-Zabel S, Huber P, Schlegel W, Debus J. Pediatric cerebral arteriovenous malformations: the role of stereotactic linac-based radiosurgery. Int J Radiat Oncol Biol Phys. 2006;65:1206–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Andrade-Souza YM, Zadeh G, Ramani M, Scora D, Tsao MN, Schwartz ML. Testing the radiosurgery-based arteriovenous malformation score and the modified Spetzler-Martin grading system to predict radiosurgical outcome. J Neurosurg. 2005;103:642–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Andrade-Souza YM, Zadeh G, Scora D, Tsao MN, Schwartz ML. Radiosurgery for basal ganglia, internal capsule, and thalamus arteriovenous malformation: clinical outcome. Neurosurgery. 2005;56:56–63; discussion −4.CrossRefPubMedGoogle Scholar
  14. 14.
    Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg. 2004;100:210–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Pollock BE, Gorman DA, Coffey RJ. Patient outcomes after arteriovenous malformation radiosurgical management: results based on a 5- to 14-year follow-up study. Neurosurgery. 2003;52:1291–6; discussion 6–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Maruyama K, Kondziolka D, Niranjan A, Flickinger JC, Lunsford LD. Stereotactic radiosurgery for brainstem arteriovenous malformations: factors affecting outcome. J Neurosurg. 2004;100:407–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Pollock BE, Brown Jr RD. Use of the Modified Rankin Scale to assess outcome after arteriovenous malformation radiosurgery. Neurology. 2006;67:1630–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Kiran NA, Kale SS, Vaishya S, et al. Gamma Knife surgery for intracranial arteriovenous malformations in children: a retrospective study in 103 patients. J Neurosurg. 2007;107:479–84.PubMedGoogle Scholar
  19. 19.
    Nicolato A, Longhi M, Tommasi N, et al. Leksell Gamma Knife for pediatric and adolescent cerebral arteriovenous malformations: results of 100 cases followed up for at least 36 months. J Neurosurg Pediatr. 2015;16(6):16–47.CrossRefGoogle Scholar
  20. 20.
    Borcek AO, Emmez H, Akkan KM, et al. Gamma Knife radiosurgery for arteriovenous malformations in pediatric patients. Childs Nerv Syst. 2014;30:1485–92.CrossRefPubMedGoogle Scholar
  21. 21.
    Kano H, Kondziolka D, Flickinger JC, et al. Stereotactic radiosurgery for arteriovenous malformations, part 2: management of pediatric patients. J Neurosurg Pediatr. 2012;9:1–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Nicolato A, Lupidi F, Sandri MF, et al. Gamma knife radiosurgery for cerebral arteriovenous malformations in children/adolescents and adults. Part I: differences in epidemiologic, morphologic, and clinical characteristics, permanent complications, and bleeding in the latency period. Int J Radiat Oncol Biol Phys. 2006;64:904–13.CrossRefPubMedGoogle Scholar
  23. 23.
    Schaller C, Schramm J. Microsurgical results for small arteriovenous malformations accessible for radiosurgical or embolization treatment. Neurosurgery. 1997;40:664–72; discussion 72–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Kiris T, Sencer A, Sahinbas M, Sencer S, Imer M, Izgi N. Surgical results in pediatric Spetzler-Martin grades I-III intracranial arteriovenous malformations. Childs Nerv Syst. 2005;21:69–74; discussion 5–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Gross BA, Storey A, Orbach DB, Scott RM, Smith ER. Microsurgical treatment of arteriovenous malformations in pediatric patients: the Boston Children’s Hospital experience. J Neurosurg Pediatr. 2015;15:71–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Heros RC, Korosue K, Diebold PM. Surgical excision of cerebral arteriovenous malformations: late results. Neurosurgery. 1990;26:570–7; discussion 7–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Hamilton MG, Spetzler RF. The prospective application of a grading system for arteriovenous malformations. Neurosurgery. 1994;34:2–6; discussion −7.PubMedGoogle Scholar
  28. 28.
    Hanakita S, Koga T, Shin M, Igaki H, Saito N. The long-term outcomes of radiosurgery for arteriovenous malformations in pediatric and adolescent populations. J Neurosurg Pediatr. 2015;16:222–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Pan DH, Guo WY, Chung WY, Shiau CY, Chang YC, Wang LW. Gamma knife radiosurgery as a single treatment modality for large cerebral arteriovenous malformations. J Neurosurg. 2000;93 Suppl 3:113–9.PubMedGoogle Scholar
  30. 30.
    Tanaka T, Kobayashi T, Kida Y, Oyama H, Niwa M. Comparison between adult and pediatric arteriovenous malformations treated by Gamma Knife radiosurgery. Stereotact Funct Neurosurg. 1996;66 Suppl 1:288–95.PubMedGoogle Scholar
  31. 31.
    Hashimoto T, Mesa-Tejada R, Quick CM, et al. Evidence of increased endothelial cell turnover in brain arteriovenous malformations. Neurosurgery. 2001;49:124–31; discussion 31–2.PubMedGoogle Scholar
  32. 32.
    Maruyama K, Koga T, Shin M, Igaki H, Tago M, Saito N. Optimal timing for Gamma Knife surgery after hemorrhage from brain arteriovenous malformations. J Neurosurg. 2008;109(Suppl):73–6.PubMedGoogle Scholar
  33. 33.
    Reyns N, Blond S, Gauvrit JY, et al. Role of radiosurgery in the management of cerebral arteriovenous malformations in the pediatric age group: data from a 100-patient series. Neurosurgery. 2007;60:268–76; discussion 76.CrossRefPubMedGoogle Scholar
  34. 34.
    Pan DH, Kuo YH, Guo WY, et al. Gamma Knife surgery for cerebral arteriovenous malformations in children: a 13-year experience. J Neurosurg Pediatr. 2008;1:296–304.CrossRefPubMedGoogle Scholar
  35. 35.
    Potts MB, Sheth SA, Louie J, et al. Stereotactic radiosurgery at a low marginal dose for the treatment of pediatric arteriovenous malformations: obliteration, complications, and functional outcomes. J Neurosurg Pediatr. 2014;14:1–11.CrossRefPubMedGoogle Scholar
  36. 36.
    Yamamoto M, Akabane A, Matsumaru Y, Higuchi Y, Kasuya H, Urakawa Y. Long-term follow-up results of intentional 2-stage Gamma Knife surgery with an interval of at least 3 years for arteriovenous malformations larger than 10 cm(3). J Neurosurg. 2012;117(Suppl):126–34.PubMedGoogle Scholar
  37. 37.
    Seymour ZA, Sneed PK, Gupta N, et al. Volume-staged radiosurgery for large arteriovenous malformations: an evolving paradigm. J Neurosurg. 2016;124:163–74.CrossRefPubMedGoogle Scholar
  38. 38.
    Lang SS, Beslow LA, Bailey RL, et al. Follow-up imaging to detect recurrence of surgically treated pediatric arteriovenous malformations. J Neurosurg Pediatr. 2012;9:497–504.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Klimo Jr P, Rao G, Brockmeyer D. Pediatric arteriovenous malformations: a 15-year experience with an emphasis on residual and recurrent lesions. Childs Nerv Syst. 2007;23:31–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Sheth SA, Potts MB, Sneed PK, et al. Angiographic features help predict outcome after stereotactic radiosurgery for the treatment of pediatric arteriovenous malformations. Childs Nerv Syst. 2014;30:241–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Yen CP, Monteith SJ, Nguyen JH, Rainey J, Schlesinger DJ, Sheehan JP. Gamma Knife surgery for arteriovenous malformations in children. J Neurosurg Pediatr. 2010;6:426–34.CrossRefPubMedGoogle Scholar
  42. 42.
    Zadeh G, Andrade-Souza YM, Tsao MN, et al. Pediatric arteriovenous malformation: University of Toronto experience using stereotactic radiosurgery. Childs Nerv Syst. 2007;23:195–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Smyth MD, Sneed PK, Ciricillo SF, et al. Stereotactic radiosurgery for pediatric intracranial arteriovenous malformations: the University of California at San Francisco experience. J Neurosurg. 2002;97:48–55.CrossRefPubMedGoogle Scholar
  44. 44.
    Zeiler FA, Janik MK, McDonald PJ, et al. Gamma knife radiosurgery for pediatric arteriovenous malformations: a Canadian experience. Can J Neurol Sci. 2015;43(1):82–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Pollock BE, Lunsford LD, Kondziolka D, Maitz A, Flickinger JC. Patient outcomes after stereotactic radiosurgery for “operable” arteriovenous malformations. Neurosurgery. 1994;35:1–7; discussion −8.CrossRefPubMedGoogle Scholar
  46. 46.
    Yeon JY, Shin HJ, Kim JS, Hong SC, Lee JI. Clinico-radiological outcomes following gamma knife radiosurgery for pediatric arteriovenous malformations. Childs Nerv Syst. 2011;27:1109–19.CrossRefPubMedGoogle Scholar
  47. 47.
    Poorthuis MH, Klijn CJ, Algra A, Rinkel GJ, Al-Shahi Salman R. Treatment of cerebral cavernous malformations: a systematic review and meta-regression analysis. J Neurol Neurosurg Psychiatry. 2014;85:1319–23.CrossRefPubMedGoogle Scholar
  48. 48.
    Amin-Hanjani S, Ogilvy CS, Candia GJ, Lyons S, Chapman PH. Stereotactic radiosurgery for cavernous malformations: Kjellberg’s experience with proton beam therapy in 98 cases at the Harvard Cyclotron. Neurosurgery. 1998;42:1229–36; discussion 36–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Cifarelli CP, Kaptain G, Yen CP, Schlesinger D, Sheehan JP. Gamma knife radiosurgery for dural arteriovenous fistulas. Neurosurgery. 2010;67:1230–5; discussion 5.CrossRefPubMedGoogle Scholar
  50. 50.
    Zaidi HA, Kalani MY, Spetzler RF, McDougall CG, Albuquerque FC. Multimodal treatment strategies for complex pediatric cerebral arteriovenous fistulas: contemporary case series at Barrow Neurological Institute. J Neurosurg Pediatr. 2015;15:615–24.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hannah E. Goldstein
    • 1
  • Stephen G. Bowden
    • 2
  • Sunjay M. Barton
    • 2
  • Eileen Connolly
    • 3
  • Richard C. E. Anderson
    • 4
  • Sean D. Lavine
    • 5
  1. 1.Department of Neurological SurgeryColumbia University Medical Center, The Neurological InstituteNew YorkUSA
  2. 2.Medical Student, College of Physicians and SurgeonsColumbia University Medical CenterNew YorkUSA
  3. 3.Assistant ProfessorRadiation Oncology, Columbia University Medical CenterNew YorkUSA
  4. 4.Associate ProfessorNeurological Surgery, Columbia University Medical CenterNew YorkUSA
  5. 5.Associate Professor of Neurological Surgery and Radiology, Clinical Co-Director of Neuroendovascular ServicesDepartment of Neurological Surgery, Columbia University Medical CenterNew YorkUSA

Personalised recommendations