Skip to main content

Conversions and Pathways of Organic Carbon and Organic Nitrogen in Soils

  • Chapter
  • First Online:
Bioactive Compounds in Agricultural Soils

Abstract

In mineral cultivated soils in the aspect of agricultural utilization, the content of soil organic matter is one of the most important parameters which influences the physical, chemical, and biological properties. The turnover of organic matter in soil and especially its basic elements carbon and nitrogen are the main investigated elements in the aspect of their dynamics. Full understanding of their turnover is possible by the application of sequential fractionation methods in which mobile and active fractions of those elements are separated. In this chapter we present a few groups of organic carbon compounds present in soil with the possible ways of their turnover (immobilization–mineralization process) as well as some chemical methods which are used for the separation of selected biologically active compounds (humic and fulvic acids, polysaccharides, organic acids, phenols) or further degradation methods like chemolysis, susceptibility for oxidation, and fractional separation with the application of different chemical reagents (KMnO4, H2SO4, K2Cr2O7). The nitrogen element in soils is mainly organic compound in form (95 %) but is available for plants (\( {{\mathrm{NH}}_4}^{+} \), \( {{\mathrm{NO}}_3}^{-} \)) for only 5 % of the total content. Dynamics and direction of the turnover processes of organic nitrogen compounds in soils on the big scales depend upon the quality and quantity of those compounds. This chapter contains discussion about the turnover of protein, amino acids, and amino sugars, nitrification and denitrification processes, as well as isolation of different groups of organic nitrogen compounds by chemolysis. Also a new method of sequential fractionation of organic matter from mineral soils is proposed in which through fractional separation the amount of carbon and nitrogen can be determined. For the agricultural utilization especially of fertilizers, the possibility of calculating the amount of nitrogen mineralization during vegetation period from so-called easily mineralized forms of organic nitrogen compounds is proposed, which helps to calculate the dose of nitrogen applied as a fertilizer. This step in the equilibrium of nitrogen in soils prevents pollution of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambroz Z (1965) The proteolytic complex decomposing proteins in soil. Rostlinna Vyroba 11:161–170

    Google Scholar 

  • Ambroz Z (1971) The determination of the activities of gelatinase and caseinase in the soil. Biology Sol 13:28–29

    Google Scholar 

  • Anderson G (1970) The isolation of nucleoside diphosphates from alkaline extracts of soil. J Soil Sci 21:96–104

    Article  CAS  Google Scholar 

  • Antheunisse J (1972) Decomposition of nucleic acids and some of their degradation products by microorganisms. Antonie van Leeuwenhoek J Microbiol Serol 38:311–327

    Article  CAS  Google Scholar 

  • Asami T, Hara M (1970) On the fractionation of soil organic matter after hydrolysis with hydrochloric acid. J Soil Sci Manure 41 (From Soil Sci Plant Nutr Tokyo 17) p. 222

    Google Scholar 

  • Balestend J, Mariotti A, Boisgontier D (1990) Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields. J Soil Sci 41:587–596

    Article  Google Scholar 

  • Barabasz W, Albińska D, Jaśkowska M, Lipiec J (2002) Biological effects of mineral nitrogen fertilization on soil microorganisms. Pol J Environ Stud 11:193–198

    Google Scholar 

  • Batistic L, Mayaudon J (1970) Biological stabilisation in the soil of C14 ferulic acid, C14 vanillic acid and C14 p-coumaric acid. Ann Inst Pasteur 118:199–206

    CAS  Google Scholar 

  • Becher M, Kalembasa D (2011) Fractions of nitrogen and carbon in humus horizons of arable Luvisols and Cambisols located on Siedlce upland. Acta Agrophysica 18:7–16 (In Polish)

    Google Scholar 

  • Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997) An interlaboratory comparison of ten different ways for measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032

    Article  CAS  Google Scholar 

  • Blair GJ, Lefroy RDB, Lisle L (1995) Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural system. Aust J Agric Res 46:1459–1466

    Article  Google Scholar 

  • Bohn HL (1976) Estimate of organic carbon in world soils. Soil Sci Soc Am J 40:468–469

    Article  Google Scholar 

  • Bremner JM (1965) Organic forms of nitrogen. In: Black CA (ed) Methods of soil analysis Part 2 Chemical and microbiological properties, vol 9, Agronomy. American Society of Agronomy, Madison, pp 1238–1255

    Google Scholar 

  • Bremner JM (1967) Nitrogenous compounds. In: McLoren D, Peterson GH (eds) Soil biochemistry, vol 1. Marcel Dekker Inc, New York, pp 19–66

    Google Scholar 

  • Broadbent FE (1986) Empirical modeling of soil nitrogen mineralization processes. Soil Sci 141:208–213

    Article  CAS  Google Scholar 

  • Brooks PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  Google Scholar 

  • Brunn S, Agren GI, Christensen BT, Jensen LS (2010) Measuring and modeling continuous quality distributions of soil organic matter. Biogeosciences 7:27–41

    Article  Google Scholar 

  • Camberdella CA (2005) Carbon cycle in soils formation and decomposition. In: Encyclopedia of soil in the environment. Elsevier Ltd, Amsterdam, pp 170–175

    Chapter  Google Scholar 

  • Ceccherni MD, Ascher J, Guervi G, Pietramellara G (2009) In field-detection and quantification of extracellular DNA. J Plant Nutr Soil Sci 172:626–629

    Article  CAS  Google Scholar 

  • Chan KY, Bowman A, Oates A (2001) Oxidizible organic carbon fraction and soil quality changes in an oxic Paleustalf under different pasture lays. Soil Sci 166(1):61–67

    Article  CAS  Google Scholar 

  • Cheng CN, Kurtz LT (1975) Extraction and desalting amino acids from soil and sediments, evaluation of methods. Soil Biol Biochem 7:319–322

    Article  CAS  Google Scholar 

  • Christensen BT (1986) Straw incorporation and soil organic matter in macro-aggregates and particle size separates. J Soil Sci 37:125–135

    Article  Google Scholar 

  • Cook BD, Allan DL (1992) Dissolved organic carbon in old field soils; compositional changes during the biodegradation of soil organic matter. Soil Biol Biochem 24:595–600

    Article  CAS  Google Scholar 

  • Crompton TR (2012) Organic compounds in soil sediments and sludges. Analysis and determination. Taylor & Francis Ltd/CRC Press, London, pp 3–456

    Book  Google Scholar 

  • Fismes J, Perrin-Ganier C, Empereur-Bissonnet P, Morel JL (2002) Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J Environ Qual 31:1649–1656

    Article  CAS  PubMed  Google Scholar 

  • Flaig W (1968a) Einwirkung von organischen Bodenbestandteilen auf das Pflanzenwachstum. Landwirtsch Forsch 21:103–127

    CAS  Google Scholar 

  • Flaig W (1968b) Uptake of organic substances from soil organic matter by plants. Pontofiwae Academiae Scientiarum Scripta Varia 32:1–48

    Google Scholar 

  • Flaig W (1971) Organic compounds in soil. Soil Sci 111(1):19–33

    Article  CAS  Google Scholar 

  • Flaig W, Beutelspacher H, Rietz E (1975) Chemical composition and physical properties of humic substances. In: Gieseking JE (ed) Soil components, vol 1. Springer, New York, pp 1–211

    Chapter  Google Scholar 

  • Fotyma E, Fotyma M (2004) Optimalisation of winter wheat nitrogen fertilization with the use of Nmin soil test. Fertil Fertil 3(20):55–73 (in Polish)

    Google Scholar 

  • Fotyma M, Fotyma E, Kęsik E, Krzyrzkowska T (1987) Mineralisation ability of soil in relations to nitrogen. Annu Soil Sci 38(3):79–81

    Google Scholar 

  • Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils in Europe. Geoderma 122:1–23

    Article  CAS  Google Scholar 

  • Gijsman AJ, Hoogenboom G, Paryon WJ, Kerridge C (2002) Modifying DSSAT crop models for low-input agricultural systems using a soil organic matter-residue module from CENTURY. Agron J 94:462–474

    Article  Google Scholar 

  • Gilbert RG, Altman J (1966) Ethanol extraction of free amino acids from soil. Plant Soil 24:229–238

    Article  CAS  Google Scholar 

  • Gonet SS, Markiewicz M (2007) The role of organic matter in environment. Polish Society of Humic Substances, Wrocław, pp 7–149 (In Polish)

    Google Scholar 

  • Goring CAI, Bartholomew WV (1952) Adsorption of mononucleotides nucleic acids and nucleoproteins by clay. Soil Sci 74:149–164

    Article  CAS  Google Scholar 

  • Greaves MP, Wilson MJ (1970) The degradation of nucleic acids and montmorillonite – nucleic acid complexes by soil microorganisms. Soil Biol Biochem 2:257–268

    Article  CAS  Google Scholar 

  • Greaves MP, Wilson MJ (1973) Effects of soil microorganisms on montmorillonite-adenine complexes. Soil Biol Biochem 5:275–276

    Article  CAS  Google Scholar 

  • Griffith SM, Sowden FJ, Schnitzer M (1976) The alkaline hydrolysis of acid resistant soil and humic acid residue. Soil Biol Biochem 8:511–529

    Article  Google Scholar 

  • Guenzi WD, McCalla TM (1966) Phytotoxic substances extracted from soil. Soil Sci Soc Am Proc 30:214–216

    Article  CAS  Google Scholar 

  • Haider K, Fredrick LR, Flaig W (1965) Reaction between amino acid compounds and phenols during oxidation. Plant Soil 22:49–64

    Article  CAS  Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils. Adv Agron 85:221–268

    Article  CAS  Google Scholar 

  • Herbert BE, Bertsch PM (1995) Characterization of dissolved and colloidal organic matter in soil solution: a review. In: McFee WW, Kelly JM (eds) Carbon forms and functions in forest soil. Soil Science Society of America Inc, Madison, pp 63–88

    Google Scholar 

  • Hunt HW (1977) A model simulation for decomposition in grasslands. Ecology 58:469–484

    Article  CAS  Google Scholar 

  • IPCC Climate Change (2007) The physical science bases. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • Jansson SL, Persson J (1982) Mineralisation and immobilisation of soil nitrogen. In: Nitrogen in agricultural soils, Agronomy monograph no 22. American Society of Agronomy, Madison, pp 229–252

    Google Scholar 

  • Jenkinson DS (1966) The turnover of organic matter in soil. In: The use of isotopes in soil organic matter studies, Brunswick Volkenrade 1963. Pergamon Press Inc, Oxford, pp 187–197

    Google Scholar 

  • Jenkinson DS, Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123:298–305

    Article  CAS  Google Scholar 

  • Joergensen RG, Wu J, Brooks PC (2011) Measuring soil microbial biomass using an automated procedures. Soil Biol Biochem 43:873–876

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DS, Owen AG, Fortar JM (2002) Simple method to enable the high resolution determination of total free amino acids in soil solution and extracts. Soil Biol Biochem 34(12):1893–1902

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soil misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Kalembasa S (1995) The application of 15N and 13N isotopes in soil science and agrochemical research. W.N.T, Warszawa, pp 5–251 (in Polish)

    Google Scholar 

  • Kalembasa D, Becher M (2009) Fractions of nitrogen in drained peat-muck soils located in the upper Liwiec River valley. Water Environ Rural Areas 9:73–82 (in Polish)

    Google Scholar 

  • Kalembasa S, Kalembasa D (1986) Comparative investigations of the methods of organic carbon content determination in soil extracts. Annu Soil Sci 37(1):109–118

    Article  CAS  Google Scholar 

  • Kalembasa S, Kalembasa D (1992) The quick method for the determination of C/N ratio in mineral soils. Pol J Soil Sci 25(1):41–46

    CAS  Google Scholar 

  • Kalembasa S, Kalembasa D (2015) Chemistry and biochemistry of soil – selected issues. University of Siedlce, Siedlce, pp 1–312

    Google Scholar 

  • Kalembasa S, Niewiński S (1990) The occurrence of amino acids in humic and fulvic acids extracted from arable and forest grey – brown podzolic soil. Pol J Soil Sci 33(1):31–36

    Google Scholar 

  • Kalembasa S, Tengler Sz (2004) The role of brown coal in fertilization and environment protection. Monograph no 52. University of Podlasie, pp 3–175 (in Polish)

    Google Scholar 

  • Kalembasa S, Kalembasa D, Buchanan D (1999) Spectometric characteristic of humic acids extracted from soil by sodium hydroxide ultravibration and pyridine. Pol J Soil Sci 32(1):33–41

    CAS  Google Scholar 

  • Klavins M, Purmalis O, Rodinov V (2013) Peat humic acid properties and factors influencing their variability in temperate bog ecosystem. Estonian J Ecol 62(1):35–52

    Article  Google Scholar 

  • Kolář L, Kužel S, Horáček J, Čechová V, Borová-Batt J, Peterka J (2009) Labile fractions of soil organic matter their quantity and quality. Plant Soil Environ 55(6):245–251

    Google Scholar 

  • Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 38:19–30

    Article  Google Scholar 

  • Ladd JN, Jackson RB (1982) Biochemistry of ammonification. In: Nitrogen in agricultural soils, Agronomy monograph no. 22. American Society of Agronomy, Madison, pp 173–228

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lefroy RDB, Blair GJ, Strong WM (1993) Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant Soil 155(156):399–402

    Article  Google Scholar 

  • Leinweber P, Schulten HR (1998) Nonhydrolyzable organic nitrogen in soil size separates from long-term agricultural experiments. Soil Sci Soc Am J 62:383–393

    Article  CAS  Google Scholar 

  • Liaudanskiene I, Slepetiene A, Velykis A, Satkus A (2013) Distribution of organic carbon in humic and granulodensimetric fractions of soil as influenced by tillage and crop rotation. Estonian J Ecol 62(1):53–69

    Article  Google Scholar 

  • Łoginow W (1967) Effect of humic acids on the deamination of amino acids. Pam Pulawski 29:3–43 (in Polish)

    Google Scholar 

  • Łoginow W, Wiśniewski W, Gonet SS, Cieścińska B (1987) Fractionation of organic carbon based on susceptibility to oxidation. Pol J Soil Sci 20:47–52

    Google Scholar 

  • Maliszewska-Kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11:121–127

    Article  Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B, Klimkowicz-Pawlas A, Terelak H (2008) Monitoring of the soil content of polycyclic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 73:1284–1291

    Article  CAS  PubMed  Google Scholar 

  • Mallik MAB, Tesfai K (1981) Transformation of nitrosamines in soil and in vitro by soil microorganisms. Bull Environ Contam Toxicol 27:115–121

    Article  CAS  PubMed  Google Scholar 

  • Mander LN (2003) Twenty years of gibberellin research. Nat Prod Rep 20:49–69

    Article  CAS  PubMed  Google Scholar 

  • Martens DA (2002a) Identification of phenolic acid composition of alkali-extracted plant and soils. Soil Sci Soc Am J 66(4):1241–1248

    Article  Google Scholar 

  • Martens DA (2002b) Relationship between plant phenolic acids released during soil mineralization and aggregate stabilization. Soil Sci Soc Am J 66(6):1857–1867

    Article  CAS  Google Scholar 

  • Maysner T, Szajdak L, Kuś J (2006) Impact of the farming systems on the content of biologically active substances and the form of nitrogen in the soils. Agron Res 4:531–542

    Google Scholar 

  • Mazur T (1991) Nitrogen in agricultural soil. PWN, Warszawa, p 239 (in Polish)

    Google Scholar 

  • Mazzarino MJ, Oliva L, Abil A, Acoste M (1987) Factors affecting dynamics in a semiarid woodland (Dry Chaco Argentina). Plant Soil 138:85–98

    Article  Google Scholar 

  • McLauchlan KK, Hobbie SE (2004) Comparison of labile soil organic matter fractionation techniques. Soil Sci Soc Am J 68:1616–1625

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Miettinen K (1950) Assimilation of amino acids in higher plants. Symp Soc Exp Biol 13:210–229

    Google Scholar 

  • Myśków W (1981) Microbiological activity indices as applied for an evaluation of soil fertility. Post Mikrobiol 20:173–192 (in Polish)

    Google Scholar 

  • Myśków W, Stachyra A, Zięba S, Masiak D (1996) The biological activity of soil as an indicator of fertility. Soil Sci Annu 47:89–99 (in Polish)

    Article  Google Scholar 

  • Noltmann EA (1972) Altdose – Ketose isomerases. In: Boyer PD (ed) The enzymes vol. VI. Carboxylation and decarboxylation (nonoxidative) isomeration, 3rd edn. Academic, New York, pp 271–354

    Google Scholar 

  • Ocio JA, Brooks PC, Jenkinson DC (1991) Field incorporation of straw and its effect on microbial biomass and soil organic N. Soil Biol Biochem 23:171–176

    Article  CAS  Google Scholar 

  • Ohno T (2001) Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity. J Environ Qual 30:1631–1635

    Article  CAS  PubMed  Google Scholar 

  • Pancholy SK (1976) Gas chromatographic analysis of carcinogenic nitrosamines in soil. Soil Biol Biochem 8:75–76

    Article  CAS  Google Scholar 

  • Pancholy SK (1978) Formation of carcinogenic nitrosamines in soils. Soil Biol Biochem 10:27–32

    Article  CAS  Google Scholar 

  • Parsons JW (1981) Chemistry and distribution of amino sugars in soil and soil organisms. In: Paul EA, Ladd JN (eds) Soil biochemistry. Marcel Dekker Inc, New York, pp 197–227

    Google Scholar 

  • Paul EA, Juma NG (1981) Mineralization and immobilization of soil nitrogen by microorganisms. In: Clark FF, Roswall T (eds) Terrestrial nitrogen cycles. Stockholm. Ecol Bull 33:179–195

    Google Scholar 

  • Paul EA, Schmith EL (1960) Extraction of free amino acids from soil. Soil Sci Soc Am Proc 24:195–198

    Article  CAS  Google Scholar 

  • Paul EA, Schmith EL (1961) Formation of free amino acids in rhizosphere and nonrhizosphere soil. Soil Sci Soc Am Proc 25:359–362

    Article  CAS  Google Scholar 

  • Plante AE, Conant RT, Paul EA, Paustian K, Six J (2006) Acid hydrolysis of easily dispersed and microaggregate – derived silt – and clay size fractions to isolate soil organic matter. Euro J Soil Sci 57:456–467

    Article  CAS  Google Scholar 

  • Preston LM (1982) The availability of residual fertilizer nitrogen immobilized as clay fixed ammonium and organic N. Can J Soil Sci 62:479–486

    Article  CAS  Google Scholar 

  • Rees RM, Bingham IJ, Baddeley JA, Watson CA (2005) The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 128:130–154

    Article  CAS  Google Scholar 

  • Rostkowska K, Zwierz K, Różański A, Moniuszko-Jakoniuk J, Roszczenko A (1998) Formation and metabolism of N-nitrosamines. Pol J Environ Stud 7:321–325

    CAS  Google Scholar 

  • Rovira P, Vallejo UR (2000) Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Commun Soil Sci Plant Anal 31:81–100

    Article  CAS  Google Scholar 

  • Rovira P, Vallejo UR (2002) Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil an acid hydrolysis approach. Geoderma 107:109–141

    Article  CAS  Google Scholar 

  • Rovira P, Vallejo UR (2007) Labile recalcitrant and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39:202–215

    Article  CAS  Google Scholar 

  • Russel JS (1980) Simulation of nitrogen behavior of soil/plant systems. In: Frissel MJ, van Veen JA (eds). Institute for Agricultural & Forest Environment, Wageningen, pp 493–504

    Google Scholar 

  • Ryan J, Masri S, Singh M (2009) Seasonal changes in soil organic matter and biomass and labile forms of carbon as influenced by crop rotations. Commun Soil Sci Plant Anal 40:188–199

    Article  CAS  Google Scholar 

  • Salter RM, Green TC (1933) Factors effecting the accumulation and loss of nitrogen and organic carbon in cropped soils. J Am Soc Agron 25:622–630

    Article  CAS  Google Scholar 

  • Schnitzer M (1982) Organic matter characterization. In: Page AL (ed) Methods of soil analysis part 2, 2nd edn, Agronomy no 9. American Society of Agronomy, Madison, pp 581–594

    Google Scholar 

  • Schulten HR, Schnitzer M (1998) The chemistry of soil organic nitrogen; a review. Biol Fertil Soils 26:1–15

    Article  CAS  Google Scholar 

  • Shiroto Y, Yokozawa M (2006) Acid hydrolysis to partition plant material into decomposable and resistant fractions for use in the Rothamsted carbon model. Soil Biol Biochem 38:812–816

    Article  CAS  Google Scholar 

  • Smith ITA (1971) The occurrence, metabolism and functions of amines in plants. Biol Rev 46:201–241

    Article  CAS  PubMed  Google Scholar 

  • Smith OL (1979) An analytical model of the decomposition of soil organic matter. Soil Biol Biochem 11:585–606

    Article  CAS  Google Scholar 

  • Smith TM, Cramer WP, Dixon RK, Leemans R, Neilson RP, Solomon AM (1993) The global terrestrial carbon cycle. Water Air Soil Pollut 70:19–37

    Article  CAS  Google Scholar 

  • Sparling GP (1992) Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207

    Article  CAS  Google Scholar 

  • Speir TW, Ross DJ (1978) Soil phosphatase and sulphatase. In: Burns RG (ed) Soil enzymes. Academic, London, pp 197–250

    Google Scholar 

  • Stanford G, Frere MH, Schwaninger DH (1973) Temperature coefficient of soil nitrogen mineralization. Soil Sci 115:321–323

    Article  Google Scholar 

  • Stanford G, Carter JN, Smith SJ (1974) Estimates of potentially mineralizable soil organic nitrogen based on short-term incubations. Soil Sci Soc Am Proc 38:99–102

    Article  Google Scholar 

  • Stevenson FJ (1982) Organic forms of soil nitrogen. In: Nitrogen in agricultural soil, Agronomy monograph no 22. American Society of Agronomy, Madison, pp 67–122

    Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley, New York, pp 3–469

    Google Scholar 

  • Strosser E (2010) Methods for determination of labile soil organic matter. An overview. J Agrobiol 27(2):49–60

    Article  Google Scholar 

  • Sundquist ET (1993) The global carbon dioxide budget. Science 259(5097):934–941

    Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances. The new view. Environ Sci Technol 39(23):9009–9015

    Article  CAS  PubMed  Google Scholar 

  • Szajdak L (2011) Amino acids in soil. In: Narwal SS, Szajdak L, Sampietro DA (eds) Soil allelochemicals. Research methods in plant sciences, vol 1. Stadium Press LLC, Houston, pp 89–113

    Google Scholar 

  • Szajdak L, Marygonova V (2007) Occurrence of IAA auxin in some organic soils. Agron Res 5(2):175–187

    Google Scholar 

  • Szajdak LW, Nowak J (2013) Impact of peat substrates with different concentration of indole-3-acetic on ornamental plant cultivation. Peatlands Int 1:25–28

    Google Scholar 

  • Szajdak L, Österberg R (1996) Amino acids present in humic acid from soils under different cultivation. Environ Int 22:563–569

    Article  CAS  Google Scholar 

  • Szajdak L, Życzyńska-Bałoniak I (1994) Phenolic acids in brown soils under continuous cropping of rye and crop rotation. Pol J Soil Sci 27(2):113–121

    CAS  Google Scholar 

  • Szajdak L, Marygonova V, Wylegalski S, Strojny Z (2003) The content of indole-3-acetic acid in municipal wastes compost as compared with other commercial media. In: International scientific conference. Municipal soils waste composts production and influence on the environment. Humic substances in ecosystems, vol 5, pp 55–59

    Google Scholar 

  • Szajdak L, Życzyńska-Bałoniak I (2002) Influence of mid-field afforestation on the change of organic nitrogen compounds in ground water and soil. Pol J Enviro Stud 11(1):91–95

    Google Scholar 

  • Tan KH (1998) Principles of soil chemistry, 3rd edn. Marcel Dekker Inc, New York/Basel/Hong Kong, pp 1–362

    Google Scholar 

  • Tan KH (2005) Soil sampling, preparation and analysis, 2nd edn. Taylor & Francis Group, New York, pp 3–623

    Google Scholar 

  • Tan KH (2011) Principles of soil chemistry, 4th edn. CRC Press, Boca Raton, pp 4–390

    Google Scholar 

  • Tate RL, Alexander M (1975) Stability of nitrosamines in samples of lake water, soil, and sewage. J Natl Cancer Inst 54(2):327–330

    CAS  PubMed  Google Scholar 

  • Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Mentler A, Gerzabek MH (2007) FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J Plant Nutr Soil Sci 170:522–529

    Article  CAS  Google Scholar 

  • Tirol-Padre A, Ladhe JK (2004) Assessing the reliability of permanganate – oxidizable carbon as an index of soil labile carbon. Soil Sci Soc Am J 68:969–978

    Article  CAS  Google Scholar 

  • Toussoun TA, Weinhold AR, Linderman RG, Patrick ZA (1968) Nature of phytotoxic substances produced during plant residue decomposition in soil. Phytopathology 58:41–45

    CAS  Google Scholar 

  • Trojanowski J (1973) Turnover of organic substances in soil. WNT, Warszawa, pp 5–331 (in Polish)

    Google Scholar 

  • Vance ED, Brooks PC, Jensinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vogels GD, Van der Drift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev 40:403–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walkey A (1947) A critical examination of a rapid method for determining organic carbon in soils. Soil Sci 63:251–263

    Article  Google Scholar 

  • Wang TSC, Yang T-K, Chuang T-T (1967) Soil phenolic acids as plant growth inhibitors. Soil Sci 103(4):239–246

    Article  CAS  Google Scholar 

  • Weil RW, Islam KR, Stine M (2003) Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am J Altern Agric 18(1):3–17

    Article  Google Scholar 

  • Werdin-Pfisterer NR, Kiellan K, Boone RD (2009) Soil amino acid composition across a boreal forest successional sequence. Soil Biol Biochem 41:1210–1220

    Article  CAS  Google Scholar 

  • Whitehead DC (1964) Identification of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in soils. Nature 202:417–418

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chussod R, Brookes PC (1999) Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem 22(8):1167–1169

    Article  Google Scholar 

  • Xu X, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass, carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr 22:737–749

    Article  Google Scholar 

  • Yonebayashi K, Hattori T (1980) Improvements in the method for fractional determination of soil organic nitrogen. Soil Sci Plant Nutr 26(4):469–481

    Article  CAS  Google Scholar 

  • Zsolnay A (2003) Dissolved organic matter; artifacts, definitions and functions. Geoderma 113:187–209

    Article  CAS  Google Scholar 

  • Zsolnay A, Garlitz H (1994) Water extractable organic – matter in arable soils – effects of drought and long term fertilization. Soil Biol Biochem 26:1257–1261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Kalembasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kalembasa, S., Kalembasa, D. (2016). Conversions and Pathways of Organic Carbon and Organic Nitrogen in Soils. In: Szajdak, L. (eds) Bioactive Compounds in Agricultural Soils. Springer, Cham. https://doi.org/10.1007/978-3-319-43107-9_3

Download citation

Publish with us

Policies and ethics