Skip to main content
Log in

Reactions between amino acid compounds and phenols during oxidation

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

About 30 per cent of organic soil nitrogen can be hydrolized with HCl to amino acids; about 30 per cent is nonhydrolizable. In contrast to this high content of amino acid nitrogen is the small availability of the nitrogen to micro-organisms. In light of the theory proposing a reaction between the α-amino group of amino acids or peptides and quinones formed during oxidation of lignin degradation products or other phenolic compound, different types of phenols were oxidized by phenolases in presence of amino acid compounds.

It could be shown that the reaction of binding of nitrogen started at pH values higher than 6.5, and that only such phenols reacted which had no methoxylated hydroxyl groups. The reaction of some phenols during oxidation in presence of amino acids was accompanied by deamination and decarboxylation of the latter.

The reaction products of phenols with amino acids were stable against hydrolysis. Using peptides it was found that all amino acids, except the N-terminal which is bound to oxidized phenols, could be hydrolyzed normally.

With serum albumin it could be shown that there is a reaction with the amino group of the N-terminal amino acid and also with the ε-amino group of lysine residues with phenols during oxidation. The reacted protein seemed to be degraded normally with a protease ofBacillus subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bremner, J. M., Some soil organic matter problems. Soils and Fertilizers, Commonwealth Bur. Soil Sci.19 115–123 (1956).

    Google Scholar 

  2. Bremner, J. M., Organic forms of nitrogen. In: C. A. Black, ed.: Methods of Soil Analysis. American Society of Agronomy, Madison (in the press).

  3. Butenandt, A., Bieckert, H., and Schäfer, W., Über Ommochrome. XIX. Mitt.: Versuche zur Konstitution der Ommochrome: Anilinochinone als Zwischenstufen der Phenoxazonsynthese. Ann. Chem. Liebigs632 143–157 (1960).

    Google Scholar 

  4. Flaig, W., Chemie der Humusstoffe. Suomen Kemistilehti A33, 229–251 (1960).

    Google Scholar 

  5. Flaig, W. and Schmidt, H. L., Über die Einwirkung von Huminsäure auf das Wachstum einiger Penicilliumarten. Arch. Mikrobiol.27 1–32 (1957).

    PubMed  Google Scholar 

  6. Freudenberg, K. and Richtzenhain, H., Enzymatische Versuche zur Entstehung des Lignins. Ber. deut. chem. Ges.76 997–1006 (1943).

    Google Scholar 

  7. Frieden, E. and Ottesen, M., A simplified method for the purification of mushroom oxidase. Biochim. et Biophys. Acta34 248–251 (1959).

    Google Scholar 

  8. Gordon, S. A. and Paleg, L. G., Formation of auxin from tryptophan through action of polyphenols. Plant Physiol.36 838–845 (1961).

    Google Scholar 

  9. Greenstein, J. and Winnitz, M., Chemistry of the amino acids. Vol. II., Wiley and Sons, New York (1961).

    Google Scholar 

  10. Hagihara, B., Crystalline bacterial amylase and proteinase. Ann. Rept. Sci. Works Fac. Sci. Osaka Univ.2 35–80 (1954).

    Google Scholar 

  11. Jackson, H. and Kendal, L. P., The oxidation of catechol and homocatechol by tyrosinase in the presence of amino acids. Biochem. J.44 477–487 (1949).

    Google Scholar 

  12. James, W. O., Roberts, E. A., Beevers, H., and DeKock, P. C., The secondary oxidation of amino acids by the catechol-oxidase of Belladonna. Biochem. J.43 626–639 (1948).

    Google Scholar 

  13. Jansson, S. L., Tracer studies on nitrogen transformation in soil with special attention to mineralization-immobilization relationships. Kgl. Lantbruks-Högskolans Ann.24 101–361 (1958).

    Google Scholar 

  14. Kisch, B., Chinone als Fermentmodelle. V. Mitt. Vergleich der Desaminierung von einigen Di- und Tripeptiden mit der von Glycocoll. Biochem. Z.250 135–148 (1932). VI. Mitt. Die Katalyse der oxydativen Desaminierung von Glycyl-l-Tyrosin. Biochem. Z.252, 380–386 (1932).

    Google Scholar 

  15. Kisch, B. and Schuwirth, K., o-Chinone als Fermentmodelle III. Mitt.: Versuche in alkalischem Medium. Biochem. Z.247 371–385 (1932).

    Google Scholar 

  16. Kunitz, M., Crystalline soybean trypsin inhibitor. II. General properties. J. Gen. Physiol.30 291–310 (1947).

    Google Scholar 

  17. Lantz, R. et Michel, H., Action de l'ammoniaque ou des amines primaires sur le benzène substitué en 1, 2 et 4 par des groupes amino ou hydroxyles, non substitués ou substitués. Bull. Soc. Chim. France12 2402–2408 (1961).

    Google Scholar 

  18. Malmström, B., Fahraeus, G., and Mosbach, R., Purification of laccase. Biochim. et Biophys. Acta38 652–653 (1958).

    Google Scholar 

  19. Mason, H. S., Reactions between quinones and proteins. Nature175 771–772 (1955).

    Google Scholar 

  20. Mason, H. S., Comparative Biochemistry of the phenolase complex. Advances in Enzymol.16 105–184 (1955).

    Google Scholar 

  21. Musso, H.et al., Orcein and Lackmus. Angew. Chem.73 665–674 (1961).

    Google Scholar 

  22. Sanger, F. and Thompson, E. O. P., The amino-acid sequence in the glycyl chain of insulin. Biochem. J.53 353–366 (1953). See also: Methods in Enzymology, Vol.IV, p. 225. New York (1957).

    PubMed  Google Scholar 

  23. Scharpenseel, H. W. and Krausse, R. Aminosäureuntersuchungen an verschiedenen organischen Sedimenten, besonders Grau- und Braunhuminsäurefraktionen verschiedener Bodentypen (einschliesslich C14-markierter Huminsäuren). Z. Pflanzenernähr., Düng., Bodenk.96 11–34 (1962).

    Google Scholar 

  24. Schmid, H. and Schmid, K., Zur Kenntnis der Claisen-Umlagerung II. Helv. Chim. Acta36 489–500 (1953).

    Google Scholar 

  25. Thompson, H. O. P., Further observations on the N-terminal amino acids of bovine serum albumin. Biochim. et Biophys. Acta29 643–644 (1958).

    Google Scholar 

  26. Trautner, E. M. and Roberts, E. A. H., The chemical mechanism of the oxidative desamination of amino acids by catechol and polyphenoloxydase. Australian J. Sci. Research Ser. B.3 356–380 (1950).

    Google Scholar 

  27. Wieland, Th. und Pfleiderer, G., Analytische und mikropräparative Trägerelektrophorese mit höheren Spannungen. Angew. Chem.67 257–260 (1955).

    Google Scholar 

  28. Wold, F., Some properties of cross-linked bovine serum albumin. Biochim. et Biophys. Acta54 604–606 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Guest Scientist as Fulbright Research Scholar from the Agronomy Department of the Iowa State University, Ames, Iowa, U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haider, K., Frederick, L.R. & Flaig, W. Reactions between amino acid compounds and phenols during oxidation. Plant Soil 22, 49–64 (1965). https://doi.org/10.1007/BF01377689

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01377689

Keywords

Navigation