Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

This chapter provides an overview of clock technology and typical clocks (Cs, Rb, H-Maser) in use today for onboard and ground systems and identifies future trends such as fountain clocks, etc. Concepts such as clock drift, trend, random variations and the statistical methods for their characterization (Allan deviation (GlossaryTerm

ADEV

), etc.) are introduced and performance characteristics of global navigation satellite system (GlossaryTerm

GNSS

) onboard clocks are presented. The handling and impact of special and general relativity on timing measurements are discussed. Finally, the generation of a GNSS time from an ensemble of ground clocks is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACES:

atom clock ensemble in space

ADEV:

Allan deviation

AM:

amplitude modulation

BAW:

bulk acoustic wave

BCRS:

barycentric celestial reference system

BDT:

BeiDou time

BIH:

Bureau International de l’Heure

BIPM:

Bureau International des Poids et Mesures

CCIR:

Comité Consultatif International des Radiocommunications

CMCU:

clock monitoring and comparison unit

CPT:

coherent population trapping

CSAC:

chip scale atomic clock

DCFBS:

digital cesium beam frequency standard

EAL:

Echelle atomique libre (free atomic scale)

ECEF:

Earth-centered Earth-fixed

ECI:

Earth-centered inertial

FLDR:

flicker drift

FLFR:

flicker frequency (noise)

FLPH:

flicker phase (noise)

GCRS:

Geocentric Celestial Reference System

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

GPST:

GPS Time

GST:

Galileo System Time

GTRS:

Geocentric Terrestrial Reference System

IAU:

International Astronomical Union

IEEE:

Institute of Electrical and Electronics Engineers

IERS:

International Earth Rotation and Reference Systems Service

IOP:

intensity optical pumping

IRNSS:

Indian Regional Navigation Satellite System

ITRS:

International Terrestrial Reference System

ITU:

International Telecommunication Union

IUGG:

International Union of Geodesy and Geophysics

JPL:

Jet Propulsion Laboratory

MEMS:

micro-electromechanical system

MJD:

modified Julian day/date

MOT:

magneto-optical trap

NASA:

National Aeronautics and Space Administration

NGA:

National Geospatial-Intelligence Agency

NIST:

National Institute of Standards and Technology

NRL:

Naval Research Lab

OCXO:

oven controlled crystal oscillator

OWCP:

one-way carrier-phase technique

PHM:

passive hydrogen maser

PM:

phase modulation

PRN:

pseudo-random noise

QZSS:

Quasi-Zenith Satellite System

RAFS:

rubidium atomic frequency standard

RF:

radio frequency

RWDR:

random walk drift

RWFR:

random walk frequency (noise)

RWPH:

random walk phase (noise)

SAW:

surface acoustic wave

SNR:

signal-to-noise ratio

ST:

system time

SVN:

space vehicle number

TAI:

International Atomic Time

TCB:

barycentric coordinate time

TCG:

Geocentric Coordinate Time

TCXO:

temperature compensated crystal oscillator

TKS:

time keeping system

TT:

terrestrial time

TWSTFT:

two-way satellite time and frequency transfer

URSI:

International Union of Radio Science

USNO:

United States Naval Observatory

UTC:

Coordinated Universal Time

WHPH:

white phase (noise)

References

  1. D.B. Sullivan, D.W. Allan, D.A. Howe, F.L. Walls: Characterization of Clocks and Oscillators, TN-1337 (US National Institute of Standards and Technology, Gaithersburg 1990)

    Google Scholar 

  2. D.A. Howe, D.W. Allan, J.A. Barnes: Properties of signal sources and measurement methods, Proc. 35th Annu. Symp. Freq. Contr., Ft. Monmouth (IEEE, Piscataway 1981) pp. 669–716

    Google Scholar 

  3. J. Rutman, F.L. Walls: Characterization of frequency stability in precision frequency sources, Proc. IEEE 79(7), 952–960 (1991)

    Article  Google Scholar 

  4. T. Walter: Characterizing frequency stability: A continuous power-law model with discrete sampling, IEEE Trans. Instrum. Meas. 43(1), 69–79 (1994)

    Article  Google Scholar 

  5. W.J. Riley: Handbook of Frequency Stability Analysis, NIST Special Publication, Vol. 1065 (US National Institute of Standards and Technology, Gaithersburg 2008)

    Google Scholar 

  6. J.A. Barnes, A.R. Chi, L.S. Cutler, D.J. Healey, D.B. Leeson, T.E. McGunigal, J.A. Mullen Jr., W.L. Smith, R.L. Sydnor, R.F.C. Vessot, G.M.R. Winkler: Characterization of frequency stability, IEEE Trans. Instrum. Meas. IM-20(2), 105–120 (1971)

    Article  Google Scholar 

  7. S.R. Stein: Frequency and time – Their measurement and characterization. In: Precision Frequency Control, Vol. 2, ed. by E.A. Gerber, A. Ballato (Academic Press, New York 1985) pp. 191–232

    Google Scholar 

  8. M.E. Frerking: Fifty years of progress in quartz crystal frequency standards, Proc. 50th IEEE Freq. Contr. Symp., Honolulu (1996) pp. 33–46

    Google Scholar 

  9. W.L. Smith: Quartz frequency standards and clocks – Frequency standards in general. In: Precision Frequency Control, Vol. 2, ed. by E.A. Gerber, A. Ballato (Academic Press, New York 1985) pp. 79–89

    Google Scholar 

  10. Hewlett-Packard: Fundamentals of Quartz Oscillators, Application Note 200-2 Electronic Counter Series (Hewlett-Packard Company, Palo Alto 1997)

    Google Scholar 

  11. C.S. Lam: A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry, IEEE Ultrason. Symp., Beijing (IEEE, New Jersey 2008) pp. 694–704

    Google Scholar 

  12. J. Vanier, C. Audoin: Rubidium frequency standards. In: The Quantum Physics of Atomic Frequency Standards, Vol. 2, (Adam Hilger, Bristol 1989) pp. 1259–1350

    Chapter  Google Scholar 

  13. S. Leschiutta: The definition of the ‘atomic’ second, Metrologia 42, S10–S19 (2005)

    Article  Google Scholar 

  14. The International System of Units (SI), 8th edn. (Bureau International des Poids et Mesures, Paris 2006)

    Google Scholar 

  15. J. Vanier, C. Audoin: Cesium beam frequency standard, Part 1: Basic principles, frequency stability. In: The Quantum Physics of Atomic Frequency Standards, Vol. 2, ed. by EDITOR (Adam Hilger, Bristol 1989) pp. 613–781

    Google Scholar 

  16. A. Bauch: Caesium atomic clocks: Function, performance and applications, Meas. Sci. Technol. 14(8), 1159–1173 (2003)

    Article  Google Scholar 

  17. D. Kleppner, H.M. Goldenbergand, N.F. Ramsey: Theory of the hydrogen maser, Phys. Rev. 126(2), 603–615 (1962)

    Article  Google Scholar 

  18. D. Kleppner, H.C. Berg, S.B. Crampton, N.F. Ramsey, R.F.C. Vessot, H.E. Peters, J. Vanier: Hydrogen-maser principles and techniques, Phys. Rev. 138(4A), A972–A983 (1965)

    Article  Google Scholar 

  19. D.A. Howe, F.L. Walls, H.E. Bell, H. Hellwig: A small, passively operated hydrogen maser, Proc. 33rd Annu. Symp. Freq. Contr., Atlantic City (1979) pp. 554–562

    Google Scholar 

  20. H.T.M. Wang: An oscillating compact hydrogen maser, Proc. 34th Annu. Symp. Freq. Contr., Philadelphia (1980) pp. 364–369

    Google Scholar 

  21. W.M. Golding, R. Drullinger, A. De Marchi, W. Phillips: An atomic fountain frequency standard at NIST, Proc. 5th Symp. Freq. Stand. Metrol., Woods Hole, ed. by J.C. Bergquist (World Scientific, Singapore 1995) pp. 5–10

    Google Scholar 

  22. S.R. Jefferts, J. Shirley, T.E. Parker, T.P. Heavner, D.M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W.D. Lee, F.L. Walls: Accuracy evaluation of NIST-F1, Metrologia 39, 321–326 (2002)

    Article  Google Scholar 

  23. R. Wynands, S. Weyers: Atomic fountain clocks, Metrologia 42, s64–s79 (2005)

    Article  Google Scholar 

  24. E.F. Arias: The metrology of time, Phil. Trans. R. Soc. A 363, 2289–2305 (2005)

    Article  Google Scholar 

  25. H.J. Metcalf, P. van de Straten: Laser Cooling and Trapping (Springer, New York 1999) pp. 156–164

    Book  Google Scholar 

  26. M.A. Lombardi, T.P. Heavner, S.R. Jefferts: NIST primary frequency standards and the realization of the second, NCSL Int. Meas. 2(4), 74–89 (2007)

    Google Scholar 

  27. S.L. Rolston, W.D. Phillips: Laser cooled neutral atom frequency standards, Proc. IEEE 79(7), 943–951 (1991)

    Article  Google Scholar 

  28. L. Cacciapuoti, C. Salomon: Atomic clock ensemble in space, J. Phys. Conf. Ser. 327(012049), 1–13 (2011)

    Google Scholar 

  29. J. Vanier, A. Godone, F. Levi, S. Micalizio: Atomic clocks based on coherent population trapping: Basic theoretical models and frequency stability, Proc. IEEE FCS 17th EFTF 2003, Tampa (2003) pp. 2–15

    Google Scholar 

  30. R. Lutwak, A. Rushed, M. Varghese, G. Tepolt, J. Lablanc, M. Mescher, D.K. Serkland, G.M. Peake: The miniature atomic clock – Preproduction results, Proc. IEEE FCS 21st EFTF 2007, Geneva (2007) pp. 1327–1333

    Google Scholar 

  31. F.-C. Chan, M. Joerger, S. Khanafseh, B. Pervan, O. Jakubov: Reducing the jitters – How a chip-scale atomic clock can help mitigate broadband interference, GPS World 5(25), 44–51 (2014)

    Google Scholar 

  32. V. Giordano, S. Grop, B. Dubois, P.-Y. Bourgeois, Y. Kersalé, G. Haye, V. Dolgovskiy, N. Bucalovic, G. Di Domenico, S. Schilt, J. Chauvin, D. Valat, E. Rubiola: New generation of cryogenic sapphire microwave oscillators for space, metrology and scientific applications, Rev. Sci. Instrum. 83(085113), 1–6 (2012)

    Google Scholar 

  33. E.A. Burt, S. Taghavi-Larigani, J.D. Prestage, R.L. Tjoelker: Compensated multi-pole mercury trapped ion frequency standard and stability evaluation of systematic effects, Proc. 7th Symp. Freq. Stand. Metrol., Pacific Grove, ed. by L. Maleki (World Scientific, Singapore 2009) pp. 321–328

    Google Scholar 

  34. N. Poli, C.W. Oates, P. Gill, G.M. Tino: Optical atomic clocks, Riv. Nuovo Cimento 36(12), 555–624 (2013)

    Google Scholar 

  35. A.G. Smart: Optical-lattice clock sets new standard for timekeeping, Phys. Today 63(3), 12–14 (2014)

    Google Scholar 

  36. J. Ye, H. Schnatz, L. Hollberg: Optical frequency combs: From frequency metrology to optical phase control, IEEE J. Quantum Electron. 9(4), 1041–1058 (2003)

    Article  Google Scholar 

  37. T.A. Stansell: The navy navigation satellite system: Description and status, Navigation 15(3), 229–243 (1968)

    Article  Google Scholar 

  38. B.W. Parkinson, T.A. Stansell, R.L. Beard, K. Gromov: A history of satellite navigation, Navigation 42(1), 109–164 (1995)

    Article  Google Scholar 

  39. R.L. Beard, J.A. Murray, J.D. White: GPS clock technology and navy PTTI programs at the US Naval research laboratory, Proc. 18th Annu. PTTI Meet., Reston (1987) pp. 37–53

    Google Scholar 

  40. A.B. Bassevich, P. Bogdanov, A.G. Gevorkyan, A. Tyulyakov: Glonass onboard time/frequency standards: Ten years of operation, Proc. 28th Annu. PTTI Meet., Reston (1997) pp. 455–462

    Google Scholar 

  41. R. Fatkulin, V. Kossenko, S. Storozhev, V. Zvonar, V. Chebotarev: GLONASS space segment: Satellite constellation, GLONASS-M and GLONASS-K spacecraft, main features, ION GNSS 2012, Nashville (2012) pp. 3912–3930

    Google Scholar 

  42. P. Rochat, F. Droz, P. Mosset, G. Barmaverain, Q. Wang, D. Boving, L. Mattioni, M. Belloni, M. Gioia, U. Schmidt, T. Pike, F. Emma: The onboard galileo rubidium and passive maser, status and performance, Proc. IEEE FCS 2005, Vancouver (2005) pp. 26–32

    Google Scholar 

  43. J. Xie: Study to spaceborne rubidium atomic clocks characteristics and ground test requirements, Proc. CSNC 2014, Nanjing, Vol. III, ed. by J. Sun, W. Jiao, H. Wu, M. Lu (Springer, Berlin 2014) pp. 451–461

    Google Scholar 

  44. C. Li, T. Yang, L. Zhai, L. Ma: Development of new-generation space-borne rubidium clock, Proc. CSNC 2013, Wuhan, Vol. III, ed. by J. Sun, W. Jiao, H. Wu, C. Shi (Springer, Berlin 2013) pp. 379–386

    Google Scholar 

  45. Y. Xie, P. Chen, S. Liu, T. Pei, Y. Shuai, C. Lin: Development of space mini passive hydrogen maser, Proc. CSNC 2015, Xi’an, Vol. III, ed. by J. Sun, J. Liu, S. Fan, X. Lu (Springer, Berlin 2015) pp. 343–349

    Google Scholar 

  46. N.D. Bhaskar, J. White, L. Mallette, T. McClelland, J. Hardy: A historical review of atomic frequency standards used in space systems, Proc. 50th IEEE FCS, Honolulu (1996) pp. 24–32

    Google Scholar 

  47. L. Mallette, J. White, P. Rochat: Space qualified frequency sources (clocks) for current and future GNSS applications, IEEE/ION PLANS 2010, Indian Wells (2010) pp. 903–908

    Google Scholar 

  48. J. White, R. Beard: Space clocks – Why they’re different, Proc. 33rd PTTI Meet., Long Beach, ed. by L.A. Breakiron (USNO, Washington, DC 2001) pp. 7–18

    Google Scholar 

  49. S. Nichols, J.D. White, F. Danzy: Design and Ground Test of the NTS1 Frequency Standard System, Naval Research Laboratory Report 7904, (Naval Research Laboratory, Washington 1975)

    Google Scholar 

  50. C.O. Alley, R. Williams, G. Singh, J. Mullendore: Performance of the new Efratom optically pumped rubidium frequency standards and their possible application in space relativity experiments, Proc. 4th PTTI Plan. Meet., Greenbelt (1972) pp. 29–40

    Google Scholar 

  51. M.J. Van Melle: Cesium and rubidium frequency standards status and performance on the GPS program, Proc. 27th Annu. PTTI Meet., San Diego (1996) pp. 167–180

    Google Scholar 

  52. W.J. Riley: A rubidium clock for GPS, Proc. 13th Annu. PTTI Meet., Washington (1982) pp. 609–630

    Google Scholar 

  53. F. Vannicola, R.L. Beard, J.D. White, K. Senior, M. Largay, J.A. Buisson: GPS block IIF atomic frequency standard analysis, Proc. 42nd Annu. PTTI Meet., Reston (2011) pp. 181–196

    Google Scholar 

  54. R.T. Dupuis, T.J. Lynch, J.R. Vaccaro, E.T. Watts: Rubidium frequency standard for the GPS IIF program and modifications for the RAFSMOD program, Proc. ION GNSS 2010, Portland (2010) pp. 781–788

    Google Scholar 

  55. Y.G. Gouzhva, A.G. Gevorkyan, V.V. Korniyenko: Atomic frequency standards for satellite radio navigation systems, Proc. 45th IEEE FCS, Los Angeles (1991) pp. 591–593

    Google Scholar 

  56. F. Droz, P. Rochat, Q. Wang: Performance overview of space rubidium standards, Proc. 24th EFTF, Noordwijk (2010) pp. 1–6

    Google Scholar 

  57. P. Waller, F. Gonzalez, S. Binds, I. Sesia, I. Hidalgo, G. Tobias, P. Tavella: The in-orbit performance of GIOVE clocks, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 57(3), 738–745 (2010)

    Article  Google Scholar 

  58. J.D. White, F. Danzy, S. Falvey, A. Frank, J. Marshall: NTS-2 cesium beam frequency standard for GPS, Proc. 8th Annu. PTTI Meet., Washington (1977) pp. 637–664

    Google Scholar 

  59. Symmetricom: Datasheet 4415 Digital Cesium Frequency Standard (Symmetricom, San Jose 2003)

    Google Scholar 

  60. S. Feairheller, J. Purvis, R. Clark: The Russian GLONASS system. In: Understanding GPS – Principles and Applications, ed. by E.D. Kaplan (Arctech House, Boston, London 1996) pp. 439–465

    Google Scholar 

  61. Y.G. Gouzhva, A.G. Gevorkyan, A.B. Bassevich, P.P. Bogdanov, A.Y. Tyulyakov: Comparative analysis of parameters of GLONASS spaceborne frequency standards when used onboard and on service life tests, Proc. 47th IEEE FCS, Salt Lake City (1993) pp. 65–70

    Google Scholar 

  62. A. Bassevich, B. Shebshaevich, A. Tyulyakov, V. Zholnerov: Onboard atomic clocks GLONASS: Current status and future plans, Proc. ION GNSS 2007, Sess. F6a, Fort Worth (2007) pp. 1–11

    Google Scholar 

  63. R.F.C. Vessot, M.W. Levine: A test of the equivalence principle using a space-borne clock, Gen. Relat. Gravit. 10, 181–204 (1979)

    Article  Google Scholar 

  64. R.L. Easton: The hydrogen maser program for NAVSTAR GPS, Proc. 8th Annu. PTTI Meet., Washington (1976) pp. 3–12

    Google Scholar 

  65. J.D. White, A.F. Frank, V.J. Folen: Passive maser development at NRL, Proc. 12th Annu. PTTI Meet., Greenbelt (1981) pp. 495–514

    Google Scholar 

  66. H.T.M. Wang: Subcompact hydrogen maser atomic clocks, Proc. IEEE 77(7), 982–992 (1989)

    Article  Google Scholar 

  67. L. Mattioni, M. Belloni, P. Berthoud, I. Pavlenko, H. Scheda, Q. Wang, P. Rochat, F. Droz, P. Mosset, H. Ruedin: The development of a passive hydrogen maser clock for the galileo navigation system, Proc. 34th Annu. PTTI Meet., Reston (2003) pp. 161–170

    Google Scholar 

  68. P. Berthoud, I. Pavlenko, Q. Wang, H. Schweda: The engineering model of the space passive hydrogen maser for the European global navigation satellite system Galileo, Proc. IEEE FCS 17th EFTF 2003, Tampa (2003) pp. 90–94

    Google Scholar 

  69. Q. Wang, P. Mosset, F. Droz, P. Rochat, G. Busca: Verification and optimization of the physics parameters of the onboard Galileo passive hydrogen maser, Proc. 38th Annu. PTTI Meet., Reston (2007) pp. 81–94

    Google Scholar 

  70. A. Jornod, D. Goujon, D. Gritti, L.G. Bernier: The 35 kg space active hydrogen maser (SHM-35) for ACES, Proc. IEEE FCS 17th EFTF 2003, Tampa (2003) pp. 82–85

    Google Scholar 

  71. D. Goujon, P. Rochat, P. Mosset, D. Boving, A. Perri, J. Rochat, N. Ramanan, D. Simonet, X. Vernez, S. Froidevaux, G. Perruchoud: Development of the space active hydrogen maser for the ACES mission, Proc. 24th EFTF, Noordwijk (2010) pp. 1–6

    Google Scholar 

  72. J.D. Prestage, S. Chung, T. Le, M. Beach, L. Maleki, R.L. Tjoelker: One-liter Hg ion clock for space and ground applications, Proc. IEEE FCS 17th EFTF 2003, Tampa (2003) pp. 1089–1091

    Google Scholar 

  73. R.L. Tjoelker, J.D. Prestage, L. Maleki: The JPL Hg\(+\) extended linear ion trap frequency standard: Status, stability, and accuracy prospects, Proc. 28th Annu. PTTI Meet., Reston (1997) pp. 245–254

    Google Scholar 

  74. T. Ely, J. Seubert, J. Bell: Advancing navigation timing, and science with the deep space atomic clock, SpaceOps 2014 Conf., Pasadena (AIAA, Reston 2014) pp. 1–19

    Google Scholar 

  75. F.J. Gonzalez Martinez: Performance of New GNSS Satellite Clocks, Ph.D. Thesis (Karlsruher Institut für Technologie, Karlsruhe 2013)

    Google Scholar 

  76. A. Baker: GPS Block IIR time standard assembly architecture, Proc. 22rd Annu. PTTI Meet., Vienna (1991) pp. 317–324

    Google Scholar 

  77. H. Rawicz, M. Epstein, J. Rajan: The time keeping system for GPS block IIR, Proc. 24th Annu. PTTI Meet., McLean (1993) pp. 5–16

    Google Scholar 

  78. A. Wu: Performance evaluation of the GPS block IIR timekeeping system, Proc. 28th Annu. PTTI Meet., Reston, ed. by L. Breakiron (USNO, Washington 1997) pp. 441–453

    Google Scholar 

  79. F.J.M. Carrillo, A.A. Sanchez, L.B. Alonso: Hybrid synthesizers in space: Galileo’s CMCU, Proc. 2nd Int. Conf. Recent Adv. Space Technol., Istanbul (2005) pp. 361–368

    Google Scholar 

  80. D. Felbach, D. Heimbuerger, P. Herre, P. Rastetter: Galileo payload 10.23 MHz master clock generation with a clock monitoring and control unit (CMCU), Proc. IEEE FCS 17th EFTF 2003, Tampa (2003) pp. 583–586

    Google Scholar 

  81. D. Felbach, F. Soualle, L. Stopfkuchen, A. Zenzinger: Clock monitoring and control units for navigation satellites, Proc. IEEE FCS 2010, Newport Beach (2010) pp. 474–479

    Google Scholar 

  82. K. Kovach: New user equivalent range error (UERE) budget for the modernized Navstar Global Positioning System (GPS), Proc. ION NTM 2000, Anaheim (ION, Virginia 2000) pp. 550–573

    Google Scholar 

  83. J. Oaks, M. Largay, J. Buisson, W. Reid: Comparative analysis of GPS clock performance using both code phase and carrier derived pseudorange observations, Proc. 36th Annu. PTTI Syst. Appl. Meet., Washington (2004) pp. 431–440

    Google Scholar 

  84. J. Ray, K. Senior: Geodetic techniques for time and frequency comparisons using GPS phase and code measurements, Metrologia 42, 215–232 (2005)

    Article  Google Scholar 

  85. Z. Deng: Reprocessing of GFZ Multi-GNSS product GBM, IGS Workshop 2016, Sydney (IGS, Pasadena 2016)

    Google Scholar 

  86. F. Gonzalez, P. Waller: GNSS clock performance analysis using one-way carrier phase and network methods, Proc. 39th Annu. PTTI Meet., Long Beach (ION, Virginia 2007) pp. 403–414

    Google Scholar 

  87. J. Delporte, C. Boulanger, F. Mercier: Simple methods for the estimation of the short-term stability of GNSS on-board clocks, Proc. 42nd Annu. PTTI Appl. Plan. Meet., Reston (ION, Virginia 2010) pp. 215–223

    Google Scholar 

  88. O. Montenbruck, P. Steigenberger, E. Schönemann, A. Hauschild, U. Hugentobler, R. Dach, M. Becker: Flight characterization of new generation GNSS satellite clocks, Navigation 59(4), 291–302 (2012)

    Article  Google Scholar 

  89. A. Hauschild, O. Montenbruck, P. Steigenberger: Short-term analysis of GNSS clocks, GPS Solut. 17(3), 295–307 (2013)

    Article  Google Scholar 

  90. E. Griggs, E.R. Kursinski, D. Akos: Short-term GNSS satellite clock stability, Radio Sci. 50(8), 813–826 (2015)

    Article  Google Scholar 

  91. E. Griggs, E.R. Kursinski, D. Akos: An investigation of GNSS atomic clock behavior at short time intervals, GPS Solut. 18(3), 443–452 (2014)

    Article  Google Scholar 

  92. J.E. Gray, D.W. Allan: A method for estimating the frequency stability of an individual oscillator, Proc 8th Annu. Symp. Freq. Contr., Fort Monmouth (Electronic Industries Association, Washington 1974) pp. 277–287

    Google Scholar 

  93. K. Senior, J. Ray, R.L. Beard: Characterization of periodic variations in the GPS satellite clocks, GPS Solut. 12(3), 211–225 (2008)

    Article  Google Scholar 

  94. O. Montenbruck, U. Hugentobler, R. Dach, P. Steigenberger, A. Hauschild: Apparent clock variations of the block IIF-1 (SVN-62) GPS satellite, GPS Solut. 16(3), 303–313 (2012)

    Article  Google Scholar 

  95. O. Montenbruck, P. Steigenberger, U. Hugentobler: Enhanced solar radiation pressure modeling for Galileo satellites, J. Geod. 89(3), 283–297 (2015)

    Article  Google Scholar 

  96. G. Petit, B. Luzum: IERS Conventions (2010), IERS Technical Note No. 36 (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt 2010)

    Google Scholar 

  97. J. Kouba: Improved relativistic transformations in GPS, GPS Solut. 8(3), 170–180 (2004)

    Article  Google Scholar 

  98. J. Kouba: A Guide to Using International GNSS Service (IGS) Products (IGS, Pasadena 2015), http://kb.igs.org/

    Google Scholar 

  99. Russian Institute of Space Device Engineering: Global Navigation Satellite System GLONASS – Interface Control Document, Vol. 5.1 (Russian Institute of Space Device Engineering, Moscow 2008)

    Google Scholar 

  100. Global Positioning Systems Directorate: Navstar GPS Space Segment/Navigation User Segment Interfaces, Interface Specification, IS-GPS-200H, 24 Sep. 2013 (Global Positioning Systems Directorate, Los Angeles Air Force Base, El Segundo 2013)

    Google Scholar 

  101. European GNSS (Galileo) Open Service Signal In Space Interface Control Document, OS SIS ICD, Iss. 1.1, Sep. 2010 (EU 2010)

    Google Scholar 

  102. China Satellite Navigation Office: BeiDou Navigation Satellite System Signal In Space Interface Control Document – Open Service Signal, v2.0, Dec. 2013 (China Satellite Navigation Office, Bejing 2013)

    Google Scholar 

  103. JAXA: Quasi-Zenith Satellite System Navigation Service Interface Specification for QZSS, IS-QZSS, V1.4, 28 Feb. 2012 (JAXA, Chōfu 2012)

    Google Scholar 

  104. Indian Space Research Organization: Indian Regional Navigation Satellite System – Signal In Space ICD for Standard Positioning Service, version 1.0, June 2014 (Indian Space Research Organization, Bangalore, 2014)

    Google Scholar 

  105. H.M. Smith: International time and frequency coordination, Proc. IEEE 60(5), 479–487 (1972)

    Article  Google Scholar 

  106. H.M. Smith: International coordination and atomic time, Vistas Astron. 28(1), 123–128 (1985)

    Article  Google Scholar 

  107. T.J. Quinn: The BIPM and the accurate measurement of time, Proc. IEEE 79(7), 894–905 (1991)

    Article  Google Scholar 

  108. P. Tavella, C. Thomas: Comparative study of time scale algorithms, Metrologia 28, 57–63 (1991)

    Article  Google Scholar 

  109. C. Audoin, B. Guinot: The Measurement of Time (Cambridge Univ. Press, Cambridge 2001)

    Google Scholar 

  110. ITU: Time scales. In: Handbook Satellite Time and Frequency Transfer and Dissemination (ITU, Geneva 2010) pp. 78–91

    Google Scholar 

  111. B. Guinot: Some properties of algorithms for atomic time scales, Metrologia 24(4), 195 (1987)

    Article  Google Scholar 

  112. R.A. Nelson, D.D. McCarthy, S. Malys, J. Levine, B. Guinot, H.F. Fliegel, R.L. Beard, T.R. Bartholomew: The leap second: Its history and possible future, Metrologia 38, 509–529 (2001)

    Article  Google Scholar 

  113. ITU: Standard-Frequency and Time-Signal Emissions, ITU-R Recommendation TF.460-6 (ITU, Geneva 2002)

    Google Scholar 

  114. BIPM: Values of the differences between UTC and its local representations by individual time laboratories (Bureau International des Poids et Measure, Sèvres 2016) ftp://ftp2.bipm.org/pub/tai/publication/utclab/

  115. ITU: Time-Scale Notation, ITU-R Recommendation TF.536-2 (ITU, Geneva 2003)

    Google Scholar 

  116. C. Han, Z. Cai, Y. Lin, L. Liu, S. Xiao, L. Zhu, X. Wang: Time synchronization and performance of BeiDou satellite clocks in orbit, Int. J. Navig. Obs. 371450, 1–5 (2013)

    Google Scholar 

  117. K.R. Brown: The theory of the GPS composite clock, Proc. ION GPS 1991, Albuquerque (1991) pp. 223–241

    Google Scholar 

  118. A.L. Satin, C.T. Leondes: Ensembling clocks of the Global Positioning System (GPS), IEEE Trans. Aerosp. Electron. Syst. 26(1), 84–87 (1990)

    Article  Google Scholar 

  119. K. Senior, P. Koppang, J. Ray: Developing an IGS time scale, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 50, 585–593 (2003)

    Article  Google Scholar 

  120. J. Ray, K. Senior: IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and timescale formation, Metrologia 40, S270–S288 (2003)

    Article  Google Scholar 

  121. K. Senior: Report of the IGS working group on clock products, 19th Meet. Consult. Comm. Time Freq. Sèvres (BIPM, Sèvres 2012) pp. 219–236

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Joseph White, a colleague at the US Naval Research Laboratory, as well as Dr. Bob Nelson. Publication restrictions did not permit including Dr. White or Dr. Nelson in the authorship though many of the sections on individual atomic frequency standards and relativity were either contributed or edited by them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Beard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beard, R., Senior, K. (2017). Clocks. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_5

Download citation

Publish with us

Policies and ethics