Skip to main content

Patagonian Antagonist Yeasts for Food Biopreservation

  • Chapter
  • First Online:
Biology and Biotechnology of Patagonian Microorganisms

Abstract

Worldwide, microbial growth destroys large amounts of various products, causing yield losses in the agronomical and biotechnological industries. Traditionally, biocides have been used to manage these problems, but different disadvantages such as the establishment of resistant strains and the suppression of natural competitors have made alternatives such as biological control necessary. After harvest, many fruits are kept in cold storage to prolong their availability and shelf life. Often, this requires the application of a chemical fungicide to prevent postharvest decay from decay fungi. An alternative approach for preventing postharvest fungal decay during storage could be based on the treatment of the commodity with antagonistic yeasts. In this regard, the use of cold-adapted yeasts may offer a distinct advantage. Numerous cold-adapted yeasts species have been isolated from artificial cold environments, as well as cold-stored fruits. Recently, we isolated and identified epiphytic yeasts during the cold postharvest storage of pears and fine fruits from packinghouses in Argentinean Patagonia, and we tested their efficacy in controlling the postharvest diseases of different fruits caused by several pathogens. Additionally, killer yeasts as producers of mycocins or killer toxins that can neutralize the activities of spoilage yeasts in wines represent an interesting biocontrol strategy. Several screening studies focused to determine the occurrence of killer yeasts in winemaking environments have been carried out, and they have demonstrated the presence of killer phenotypes in yeasts from wines, cellar surfaces, and winery equipment. In previous studies carried out in our laboratory, most yeasts isolated from spontaneously fermenting grape musts evidenced killer character. These studies provide an exceptional source of potential antagonist yeasts to be used in biocontrol of undesired microorganisms in wine. Nonetheless, it is necessary to continue to identify new potential microorganisms and to develop a better understanding of the biology of yeast biocontrol systems to increase the potential of postharvest biocontrol as a viable alternative to synthetic postharvest fungicides and chemical preservatives against wine spoilage yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antunes J, Aguiar C (2012) Search for killer phenotypes with potential for biological control. Ann Microbiol 62:427–433

    Article  Google Scholar 

  • Baker KJ, Cook RJ (1974) Biological control of plant pathogens. Freeman, San Francisco

    Google Scholar 

  • Barata A, Nobre A, Correia P, Malfeito-Ferreira M, Loureiro V (2006) Growth, 4-ethylphenol production by 1 the yeast Pichia guilliermondii in grape juices. Am J Enol Viticult 57:133–138

    CAS  Google Scholar 

  • Brandao LR, Libkind D, Vaz AB, Espırito Santo LC, Moline M, de Garcıa V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Margesin R (2014) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, New York

    Book  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Ceccato-Antonini SR, Sanino A, Araujo JC, Tosta CD (2005) The killer yeasts and the alcoholic fermentation. Braz J Food Technol 5:40–45

    Google Scholar 

  • Chand Goyal T, Spotts RA (1996) Control of postharvest pear diseases using natural saprophytic yeast colonists and their combination with a low dosage of thiabendazole. Postharvest Biol Technol 7:51–64

    Article  CAS  Google Scholar 

  • Ciani M, Fatichenti F (2001) Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeasts. Appl Environ Microbiol 67:3058–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciani M, Maccarelli F (1998) Oenological properties of non-Saccharomyces yeasts associated with wine-making. World J Microbiol Biotechnol 14:199–203

    Article  CAS  Google Scholar 

  • Colussi PA, Specht CA, Taron CH (2005) Characterization of a nucleus-encoded chitinase from the yeast Kluyveromyces lactis. Appl Environ Microbiol 71:2862–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comitini M, Ciani F (2011) Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann Microbiol 61:25–32

    Article  Google Scholar 

  • Comitini F, De Ingeniis J, Pepe L, Mannazzu L, Ciani M (2004) Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238:235–240

    Article  CAS  PubMed  Google Scholar 

  • Crisosto CH, Garner D, Doyle J, Day KR (1993) Relationship between fruit respiration, bruising susceptibility and temperature in sweet cherries. Hortic Sci 28:132–135

    Google Scholar 

  • Deak T (2009) Ecology and biodiversity of yeasts with potential value in biotechnology. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, New York

    Google Scholar 

  • De Ingeniis J, Raffaelli N, Ciani M, Mannazzu I (2009) Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Appl Environ Microbiol 75:1129–1134

    Article  PubMed  Google Scholar 

  • Debode J, Hemelrijck WV, Creemers P, Maes M (2013) Effect of fungicides on epiphytic yeasts associated with strawberry. Microbiology Open 2:482–491

    Article  CAS  PubMed Central  Google Scholar 

  • Dobra AC, Sosa MC, Dussi MC (2008) Low incidence of fungal and bacterial diseases in the pear production of North Patagonia, Argentina. Acta Hortic 800:907–912

    Article  Google Scholar 

  • Dobra AC, Sosa MC, Lutz MC, Rodriguez G, Greslebin AG, Vélez ML (2011) Fruit rot caused by phytophthora in cold storaged pears in the Valley of Rio Negro and Neuquén, Argentina. Acta Hortic 909:505–510

    Article  CAS  Google Scholar 

  • Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145

    Article  Google Scholar 

  • Farkas Z, Márki-Zay J, Kucsera J, Vágvölgyi C, Golubev W, Pfeiffer I (2012) Characterization of two different toxins of Wickerhamomyces anomalus and Pichia anomala, VKM Y-159. Acta Biol Hung 63:277–287

    Article  CAS  PubMed  Google Scholar 

  • Feliziani E, Romanazzi G (2013) Preharvest application of synthetic fungicides and alternative treatments to control postharvest decay of fruit. Stewart Postharvest Rev 3:1–6

    Article  Google Scholar 

  • FRAC (Fungicide Resistance Action Committee) (2010) Fungicide use guidelines 10th meeting working group. FRAC (Fungicide Resistance Action Committee), Bananas Orlando, FL

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Golubev WI (2006) Antagonistic interactions among yeasts. In: Rosa CA, Péter G (eds) The yeast handbook. Biodiversity and ecophysiology of yeasts. Springer, Heidelberg, pp 197–219

    Chapter  Google Scholar 

  • Goretti M, Turchetti B, Buratta M, Corazzi L, Vaughan-Martini A, Buzzini P (2009) In vitro antimycotic activity of a Williopsis saturnus killer protein against food spoilage yeasts. Int J Food Microbiol 131:178–182

    Article  CAS  PubMed  Google Scholar 

  • Guyard C, Dehecq E, Tissier JP, Polonelli L, Dei-Cas E, Cailliez JC, Menozzi FD (2002) Involvement of β-glucans in the wide-spectrum antimicrobial activity of Williopsis saturnus var. mrakii MUCL 41968 killer toxin. Mol Med 8:686–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatoum R, Labrie S, Fliss I (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 3:421

    Article  PubMed  PubMed Central  Google Scholar 

  • Izgü F, Altınbay D, Türeli AE (2007) In vitro activity of panomycocin: a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434, against dermatophytes. Mycoses 50:1–34

    Article  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    Article  CAS  PubMed  Google Scholar 

  • Jijakli HM (2011) Pichia anomala in biocontrol for apples: 20 years of fundamental research and practical applications. Antonie van Leeuwenhoek J Microbiol 99:93–105

    Article  Google Scholar 

  • Lima G, De Curtis F, Castoria R, De Cicco V (1998) Activity of the yeasts Cryptococcus laurentii and Rhodotorula glutinis against post-harvest rots on different fruits. Biocontrol Sci Technol 8:257–267

    Article  Google Scholar 

  • Lima JR, Barros Gonçalves LR, Rocha BL, Rosa CA, Pinto Viana FM (2013) Isolation, identification, and activity in vitro of killer yeasts against Colletotrichum gloeosporioides isolated from tropical fruits. J Basic Microbiol 53:590–599

    Article  PubMed  Google Scholar 

  • Liu J, Michael W, Droby S, Vero S, Tian S, Hershkovitz V (2011) Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. Int J Food Microbiol 146:76–83

    Article  CAS  PubMed  Google Scholar 

  • Lopes CA, Sangorrín MP (2010) Optimization of killer assays for yeast selection protocols. Rev Argent Microbiol 42:298–306

    CAS  PubMed  Google Scholar 

  • Lopes CA, Rodríguez ME, Sangorrín MP, Querol A, Caballero A (2007) Patagonian wines: implantation of an indigenous isolate of Saccharomyces cerevisiae in fermentations conducted in traditional and modern cellars. J Ind Microbiol Biotechnol 34:139–149

    Article  CAS  PubMed  Google Scholar 

  • Lopes CA, Sáez JS, Sangorrín MP (2009) Differential response of Pichia guilliermondii spoilage isolates to biological, physical-chemical factors prevailing in Patagonian wine fermentations. Can J Microbiol 55:801–809

    Article  CAS  PubMed  Google Scholar 

  • López SN, Sangorrín MP, Pildain MB (2013) Patogenicidad y resistencia a fungicidas de patógenos de postcosecha en fruta fina de Patagonia. XIII Congreso AAM, II Congreso Microbiología Agrícola y Ambiental, 23 al 26 de septiembre de 2013, Buenos Aires

    Google Scholar 

  • López SN, Sangorrín MP, Pildain MB (2014) Diversidad de levaduras en frambuesas, zarzamoras y cerezas de Patagonia. XIII Congreso Argentino de Micología-1ra Reunión de la Asociación Micológica Carlos Spegazzini Buenos Aires, 24 al 27 de agosto

    Google Scholar 

  • López S, Sangorrín MP, Pildain MB (2015) Cold-adapted yeast as biocontrol agents of postharvest pathogens in cherries of Patagonia Sur, Argentina. V Jornadas Sudamericanas de Biología y Biotecnología de Levaduras 4-6 de Agosto, Recife, Brasil

    Google Scholar 

  • Lutz MC, Sosa MC, Lopes CA, Sangorrín MP (2012) A new improved strategy for the selection of cold-adapted antagonist yeasts to control postharvest pear diseases. Biocontrol Sci Technol 22:1465–1483

    Article  Google Scholar 

  • Lutz MC, Sosa MC, Rodriguez ME, Lopes CA, Sangorrín MP (2013) Efficacy and putative mode of action of native and commercial antagonistic yeasts against postharvest pear pathogens. Int J Food Microbiol 164:166–172

    Article  CAS  PubMed  Google Scholar 

  • Magliani W, Conti S, Giovati L, Polonelli L (2010) Yeast killer technology transfer. In: Rai M, Varma A (eds) Mycotoxins in food, feed and bioweapons. Springer, Berlin, pp 275–290

    Google Scholar 

  • Malfeito-Ferreira M (2011) Yeasts and wine off-flavours: a technological perspective. Ann Microbiol 61:95–102

    Article  CAS  Google Scholar 

  • Massart S, Martinez-Medina M, Jijakli MH (2015) Biological control in the microbiome era: challenges and opportunities. Biol Control 89:98–108

    Article  Google Scholar 

  • Mehlomakulu NN, Sebati ME, Divol B (2014) Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Int J Food Microbiol 188:83–91

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt M, Klassen R (2009) Yeast killer toxins, fundamentals and applications. In: Anke T, Weber D (eds) Physiology, genetics. The Mycota, XV, 1st edn. Springer, Heidelberg, pp 107–130

    Chapter  Google Scholar 

  • Meneghin MC, Vanda Renata Reis VR, Ceccato-Antonin SR (2010) Inhibition of bacteria contaminating alcoholic fermentations by killer yeasts. Braz Arch Biol Technol 53:1043–1050

    Article  Google Scholar 

  • Nunes CA (2012) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133:181–196

    Article  Google Scholar 

  • Ogawa JM, Zehr EI, Bird GW, Ritchie DF, Uriu K, Uyemato JK (1995) Compendium of stone fruit diseases. APS Press, St. Paul

    Google Scholar 

  • Olstorpe M, Borling J, Schnürer J, Passoth V (2010) Pichia anomala yeast improves feed hygiene during storage of moist crimped barley grain under Swedish farm conditions. Anim Feed Sci Technol 156:47–56

    Article  Google Scholar 

  • Passoth V, Fredlund E, Druvefors UA, Schnürer J (2006) Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res 6:3–13

    Article  CAS  PubMed  Google Scholar 

  • Pfliegler WP, Pusztahelyi T, Pócsi I (2015) Mycotoxins: prevention and decontamination by yeasts. J Basic Microbiol 54:1–14

    Google Scholar 

  • Pimenta RS, Morais B, Rosa CA, Corrêa A Jr (2009) Utilization of yeasts in biological control programs (Chapter 10). In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, New York

    Google Scholar 

  • Polonelli L, Magliani W, Ciociola T, Giovato L, Conti S (2011) From Pichia anomala killer toxin through killer antibodies to killer peptides for a comprehensive anti-infective strategy. Antonie van Leeuwenhoek J Microbiol 99:35–41

    Article  CAS  PubMed  Google Scholar 

  • Reiter J, Herker E, Madeo F, Schmitt MJ (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol 168:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renauld P, Miot-Sertier C, Marullo P, Hernández-Orte P, Lonvaud-Funel A, Bely M (2009) Genetic characterization, phenotypic variability in Torulaspora delbrueckii species and potential applications in the wine industry. Int J Food Microbiol 134:201–210

    Article  Google Scholar 

  • Robiglio A, Sosa MC, Lutz MC, Lopes CA, Sangorrín MP (2011) Yeast biocontrol of fungal spoilage of pears stored at low temperature. Int J Food Microbiol 147:211–216

    Article  PubMed  Google Scholar 

  • Romanazzi G (2010) Chitosan treatment for the control of postharvest decay of table grapes, strawberries and sweet cherries. New Trend Postharvest Manag Fresh Prod (Fresh Prod Spec Issue) 4:111–115

    Google Scholar 

  • Rosa MM, Tauk-Tomisiel SM, Rampazzo PE, Ceccato-Antonini SR (2010) Evaluation of the biological control by the yeast Torulaspora globosa against Colletotrichum sublineolum in sorghum. World J Microbiol Biotechnol 6:1491–1502

    Article  Google Scholar 

  • Sáez JS, Lopes CA, Kirs VC, Sangorrín MP (2010) Enhanced volatile phenols in wine fermented with Saccharomyces cerevisiae, spoiled with Pichia guilliermondii and Dekkera bruxellensis. Lett Appl Microbiol 51:170–176

    PubMed  Google Scholar 

  • Sáez JS, Lopes CA, Kirs VC, Sangorrín MP (2011a) Production of volatile phenols by Pichia manshurica, Pichia membranifaciens isolated from spoiled wines, cellar environment in Patagonia. Food Microbiol 28:503–509

    Article  PubMed  Google Scholar 

  • Sáez J, Villalba L, del Mónaco S, Lopes CA, Sangorrín MP (2011b) Caracterización preliminar de dos toxinas killer para el biocontrol de levaduras contaminantes de vinos. III Jornadas Nacionales de Biología y Biotecnología de Levaduras 30 junio-1 julio Mendoza, Argentina. Libro actas ISBN: 978-987-679-024-9

    Google Scholar 

  • Sangorrín MP, Zajonskovsky I, Lopes CA, Rodríguez ME, van Broock MR, Caballero AC (2001) Killer behaviour in wild wine yeasts associated with Merlot and Malbec type musts spontaneously fermented from Northwestern Patagonia Argentina. J Basic Microbiol 41:105–113

    Article  PubMed  Google Scholar 

  • Sangorrín MP, Zajonskovsky I, van Broock M, Caballero AC (2002) The use of killer biotyping in an old Patagonian winery yeast ecological survey. World J Microbiol Biotechnol 18:115–120

    Article  Google Scholar 

  • Sangorrín MP, Lopes CA, Giraudo MR, Caballero AC (2007) Diversity, killer behaviour of indigenous yeasts isolated from the fermentation vat surfaces in four Patagonian wineries. Int J Food Microbiol 119:351–357

    Article  PubMed  Google Scholar 

  • Sangorrín MP, Lopes CA, Jofré V, Querol A, Caballero AC (2008) Spoilage yeasts associated with Patagonian cellars: characterization, potential biocontrol based on killer interactions. World J Microbiol Biotechnol 24:945–953

    Article  Google Scholar 

  • Sangorrín MP, Lopes CA, Vero S, Wisniewski M (2014) Cold-adapted yeasts as biocontrol agents: biodiversity, adaptation strategies and biocontrol potential (Chapter 20). In: Pietro B, Rosa M (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, New York

    Google Scholar 

  • Santos A, San Mauro M, Bravo E, Marquina D (2009) PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. Microbiology 155:624–634

    Article  CAS  PubMed  Google Scholar 

  • Santos A, Navascués E, Bravo E, Marquina D (2011) Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis. Int J Food Microbiol 145:147–154

    Article  CAS  PubMed  Google Scholar 

  • Santos A, Alonso A, Belda I, Marquina D (2013) Cell cycle arrest, apoptosis and two alternative mechanisms for PMKT2 killer activity. Fungal Genet Biol 50:44–54

    Article  CAS  PubMed  Google Scholar 

  • Scarpati O, Maio S, Puga Y (2011) Cerezo: desarrollo de un cultivo no tradicional en Argentina. Estud Geogr 72:591–610

    Article  Google Scholar 

  • Scherm B, Ortu G, Muzzu A, Budroni M, Arras G, Migheli O (2003) Biocontrol activity of antagonistic yeasts against Penicillium expansum on apple. J Plant Pathol 85:205–213

    Google Scholar 

  • Schirra M, D’Aquino S, Cabras P, Angioni A (2011) Control of postharvest diseases of fruit by heat and fungicides: efficacy, residue levels, and residue persistence: a review. J Agric Food Chem 59:8531–8542

    Article  CAS  PubMed  Google Scholar 

  • Schisler DA, Janisiewicz WJ, Boekhout T, Kurtzman CP (2011) Agriculturally important yeasts: biological control of field and postharvest diseases using yeast antagonists, and yeasts as pathogens of plants. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts . Elsevier, Maryland Heights, pp 45–52

    Chapter  Google Scholar 

  • Schmitt MJ, Breinig F (2002) The viral killer system in yeast and from molecular biology to application. FEMS Microbiol Rev 26:257–276

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Reiter J (2008) Viral induced yeast apoptosis. Biochim Biophys Acta 1783:1350–1353

    Article  Google Scholar 

  • Sharma R, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Sosa MC, Lutz MC, Vélez ML, Greslebin A (2015) A pre-harvest rot of pear fruits Golden Russet Bosc caused by Phytophthora lacustris and P. drechsleri in Argentina. Austr Plant Dis Notes 17:10–18

    Google Scholar 

  • Sozzi G (2007) Dormición en árboles frutales de hojas caducas. In: Sozzi GO (ed) Árboles Frutales: ecología, cultivo y aprovechamiento. Facultad de Agronomía, Buenos Aires, pp 85–103

    Google Scholar 

  • Steensels J, Daenen L, Malcorps P, Derdelinckx G, Verachtert H, Verstrepen KJ (2015) Brettanomyces yeasts from spoilage organisms to valuable contributors to industrial fermentations. Int J Food Microbiol 206:24–38

    Article  CAS  PubMed  Google Scholar 

  • Sugar D, Basile SR (2008) Timing and sequence of postharvest fungicide and biocontrol agent applications for control of pear decay. Postharvest Biol Technol 49:107–112

    Article  CAS  Google Scholar 

  • Sun HY, Wang K, Chi K, Xu HM, Chi ZM (2012) Simultaneous production of single cell protein and killer toxin by Wickerhamomyces anomalus HN1-2 isolated from mangrove ecosystem. Proc Biochem 47:251–256

    Article  CAS  Google Scholar 

  • Teixido N, Torres R, Viñas I, Abadias M, Usall J (2011) Biological control of postharvest diseases in fruit and vegetables. In: Lacroix C (ed) Protective cultures, antimicrobial metabolites, and bacteriophages for food and beverage biopreservation. Elsevier, Amsterdam, pp 365–402

    Google Scholar 

  • Telias A, White JR, Pahl DM, Ottesen AR, Walsh CS (2011) Bacterial community diversity and variation in spray water sources and the tomato fruit surface. BMC Microbiol 11:81–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Tristezza M, Vetrano C, Bleve G, Capozzi V, Logrieco A, Mita G, Grieco F (2013) Biodiversity and safety aspects of yeast strains characterized from vineyards, spontaneous fermentations in the Apulia Region Italy. Food Microbiol 36:335–342

    Article  CAS  PubMed  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  CAS  PubMed  Google Scholar 

  • Vero S, Garmendia G, Gonzalez MB, Garat MF, Wisniewski M (2009) Aureobasidium pullulans as a biocontrol agent of postharvest pathogens of apples in Uruguay. Biosci Technol 19:1033–1049

    Google Scholar 

  • Villalba ML, Sáez JS, del Monaco S, Lopes CA, Sangorrín MP (2016) TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. Int J Food Microbiol 217:94–100

    Article  CAS  PubMed  Google Scholar 

  • Walker GM (2011) Pichia anomala, cell physiology and biotechnology relative to other yeasts. Antonie van Leeuwenhoek J Microbiol 99:25–34

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chi Z, Yue L, Li J (2007) Purification and characterization of killer toxin from a marine yeast Pichia anomala YF07b against the pathogenic yeast in crab. Curr Microbiol 55:396–401

    Article  CAS  PubMed  Google Scholar 

  • Wang XX, Chi Z, Peng Y, Wang XH, Ru SG, Chi ZM (2012) Purification, characterization and gene cloning of the killer toxin produced by the marine-derived yeast Williopsis saturnus WC91-2. Microbiol Res 167:558–563

    Article  CAS  PubMed  Google Scholar 

  • Wilson C (2013) Establishment of a world food preservation center. Agric Food Security 2:1–4

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME, Droby S, Chalutz E (1993) A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Sci Hortic 53:183–189

    Article  Google Scholar 

  • Wisniewski M, Wilson C, Droby S, Chalutz E, ElGhaouth A, Stevens C (2007) Postharvest biocontrol: new concepts and applications. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CABI, Wallingford, pp 262–273

    Google Scholar 

  • Yu T, Chen J, Chen R, Huang P, Liu D, Zheng X (2007) Biocontrol of blue and gray mold diseases of pear fruit by integration of antagonistic yeast with salicylic acid. Int J Food Microbiol 116:337–345

    Article  Google Scholar 

  • Zhang D, Spadaro D, Garibaldi A, Gullino ML (2010) Selection and evaluation of new antagonists for their efficacy against postharvest brown rot of peaches. Postharvest Biol Technol 55:174–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela P. Sangorrín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villalba, M.L., Lutz, M.C., Lopez, S., Pildain, M.B., Sangorrín, M.P. (2016). Patagonian Antagonist Yeasts for Food Biopreservation. In: Olivera, N., Libkind, D., Donati, E. (eds) Biology and Biotechnology of Patagonian Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-42801-7_17

Download citation

Publish with us

Policies and ethics