Skip to main content

Bacterial Overgrowth and Intestinal Microbiome

  • Chapter
  • First Online:
Current Concepts of Intestinal Failure

Abstract

Alterations in the gut microbiome, including bacterial overgrowth and dysbiosis, play a central role in the pathophysiology of short bowel syndrome and intestinal failure. By definition, patients with intestinal failure require TPN due to significant anatomic, mucosal, or motility disturbances. These factors in addition to pharmacologic and systemic comorbidities remodel the intestinal flora, creating a cascade of downstream pathophysiologic and clinical sequelae. The unique relationship between microbiota, epithelial barrier function, and mucosal and systemic inflammatory pathways likely drives a multitude of symptoms in intestinal failure, from intraluminal malabsorptive symptoms to severe extraintestinal complications, including liver disease. At present, diagnostic evaluations including hydrogen breath testing and duodenal aspiration/culture are considered, but may be limited in accuracy and yield. Therefore, antibiotic therapy is commonly used by intestinal rehabilitation centers. Advancements in microbiomics are likely to yield improved understanding of pathogenesis and applicable clinical evaluations that may direct future therapies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFU:

Colony-forming units

MMC:

Migratory motor complex

SIBO:

Small intestinal bacterial overgrowth

SBS:

Short bowel syndrome

HBT:

Hydrogen breath test

NEC:

Necrotizing enterocolitis

References

  1. Backhed F, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20.

    Article  CAS  PubMed  Google Scholar 

  2. Demehri FR, Barrett M, Teitelbaum DH. Changes to the intestinal microbiome with parenteral nutrition: review of a Murine model and potential clinical implications. Nutr Clin Pract. 2015;30(6):798–806.

    Article  CAS  PubMed  Google Scholar 

  3. Cole CR, Kocoshis SA. Nutrition management of infants with surgical short bowel syndrome and intestinal failure. Nutr Clin Pract. 2013;28(4):421–8.

    Article  PubMed  Google Scholar 

  4. Gutierrez IM, et al. Risk factors for small bowel bacterial overgrowth and diagnostic yield of duodenal aspirates in children with intestinal failure: a retrospective review. J Pediatr Surg. 2012;47(6):1150–4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cole CR, Ziegler TR. Small bowel bacterial overgrowth: a negative factor in gut adaptation in pediatric SBS. Curr Gastroenterol Rep. 2007;9(6):456–62.

    Article  PubMed  Google Scholar 

  6. Signoretti M, et al. Small intestinal bacterial overgrowth in patients with chronic pancreatitis. J Clin Gastroenterol. 2014;48 Suppl 1:S52–5.

    Article  PubMed  Google Scholar 

  7. Soden JS. Clinical assessment of the child with intestinal failure. Semin Pediatr Surg. 2010;19(1):10–9.

    Article  PubMed  Google Scholar 

  8. Quiros-Tejeira RE, et al. Long-term parenteral nutritional support and intestinal adaptation in children with short bowel syndrome: a 25-year experience. J Pediatr. 2004;145(2):157–63.

    Article  PubMed  Google Scholar 

  9. Duro D, Kamin D, Duggan C. Overview of pediatric short bowel syndrome. J Pediatr Gastroenterol Nutr. 2008;47 Suppl 1:S33–6.

    Article  PubMed  Google Scholar 

  10. Kaufman SS, et al. Influence of bacterial overgrowth and intestinal inflammation on duration of parenteral nutrition in children with short bowel syndrome. J Pediatr. 1997;131(3):356–61.

    Article  CAS  PubMed  Google Scholar 

  11. Husebye E. The patterns of small bowel motility: physiology and implications in organic disease and functional disorders. Neurogastroenterol Motil. 1999;11(3):141–61.

    Article  CAS  PubMed  Google Scholar 

  12. Dicken BJ, et al. Medical management of motility disorders in patients with intestinal failure: a focus on necrotizing enterocolitis, gastroschisis, and intestinal atresia. J Pediatr Surg. 2011;46(8):1618–30.

    Article  PubMed  Google Scholar 

  13. Schmidt T, et al. Effect of intestinal resection on human small bowel motility. Gut. 1996;38(6):859–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinez Rivera A, Wales PW. Intestinal transplantation in children: current status. Pediatr Surg Int. 2016;32(6):529–40.

    Article  PubMed  Google Scholar 

  15. Husebye E, et al. Severe late radiation enteropathy is characterized by impaired motility of proximal small intestine. Dig Dis Sci. 1994;39(11):2341–9.

    Article  CAS  PubMed  Google Scholar 

  16. Husebye E, et al. Abnormal intestinal motor patterns explain enteric colonization with gram-negative bacilli in late radiation enteropathy. Gastroenterology. 1995;109(4):1078–89.

    Article  CAS  PubMed  Google Scholar 

  17. Cucchiara S, et al. Antroduodenojejunal manometry in the diagnosis of chronic idiopathic intestinal pseudoobstruction in children. J Pediatr Gastroenterol Nutr. 1994;18(3):294–305.

    Article  CAS  PubMed  Google Scholar 

  18. Cucchiara S, et al. A normal gastrointestinal motility excludes chronic intestinal pseudoobstruction in children. Dig Dis Sci. 2000;45(2):258–64.

    Article  CAS  PubMed  Google Scholar 

  19. Marie I, et al. Manometry of the upper intestinal tract in patients with systemic sclerosis: a prospective study. Arthritis Rheum. 1998;41(10):1874–83.

    Article  CAS  PubMed  Google Scholar 

  20. Stacher G, et al. Effects of the prodrug loperamide oxide, loperamide, and placebo on jejunal motor activity. Dig Dis Sci. 1992;37(2):198–204.

    Article  CAS  PubMed  Google Scholar 

  21. Ziegler TR, Cole CR. Small bowel bacterial overgrowth in adults: a potential contributor to intestinal failure. Curr Gastroenterol Rep. 2007;9(6):463–7.

    Article  PubMed  Google Scholar 

  22. Deitch EA. Bacterial translocation: the influence of dietary variables. Gut. 1994;35(1 Suppl):S23–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Squires RH, et al. Natural history of pediatric intestinal failure: initial report from the Pediatric Intestinal Failure Consortium. J Pediatr. 2012;161(4):723–8. e2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Freedberg DE, Lebwohl B, Abrams JA. The impact of proton pump inhibitors on the human gastrointestinal microbiome. Clin Lab Med. 2014;34(4):771–85.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cotten CM. Adverse consequences of neonatal antibiotic exposure. Curr Opin Pediatr. 2016;28(2):141–9.

    Article  PubMed  Google Scholar 

  26. Miyasaka EA, et al. Total parenteral nutrition-associated lamina propria inflammation in mice is mediated by a MyD88-dependent mechanism. J Immunol. 2013;190(12):6607–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hodin CM, et al. Total parenteral nutrition induces a shift in the Firmicutes to Bacteroidetes ratio in association with Paneth cell activation in rats. J Nutr. 2012;142(12):2141–7.

    Article  CAS  PubMed  Google Scholar 

  28. Davidovics ZH, et al. The fecal microbiome in pediatric patients with short bowel syndrome. JPEN J Parenter Enteral Nutr. 2015.

    Google Scholar 

  29. Joly F, et al. Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie. 2010;92(7):753–61.

    Article  CAS  PubMed  Google Scholar 

  30. Engstrand Lilja H, et al. Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome. Microbiome. 2015;3:18.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bala L, et al. Malabsorption syndrome with and without small intestinal bacterial overgrowth: a study on upper-gut aspirate using 1H NMR spectroscopy. Magn Reson Med. 2006;56(4):738–44.

    Article  PubMed  Google Scholar 

  32. Saltzman JR, Russell RM. Nutritional consequences of intestinal bacterial overgrowth. Compr Ther. 1994;20(9):523–30.

    CAS  PubMed  Google Scholar 

  33. Kocoshis ESNL-SS. Bacterial overgrowth of the small intestine. In: Christopher Duggan TJ, Gura KM, editors. Clinical management of intestinal failure. Boca Raton: CRC Press; 2012. p. 301–16.

    Google Scholar 

  34. Brandt LJ, Bernstein LH, Wagle A. Production of vitamin B 12 analogues in patients with small-bowel bacterial overgrowth. Ann Intern Med. 1977;87(5):546–51.

    Article  CAS  PubMed  Google Scholar 

  35. Sentongo TA, Azzam R, Charrow J. Vitamin B12 status, methylmalonic acidemia, and bacterial overgrowth in short bowel syndrome. J Pediatr Gastroenterol Nutr. 2009;48(4):495–7.

    Article  PubMed  Google Scholar 

  36. Petersen C. D-lactic acidosis. Nutr Clin Pract. 2005;20(6):634–45.

    Article  PubMed  Google Scholar 

  37. Taylor SF, et al. Noninfectious colitis associated with short gut syndrome in infants. J Pediatr. 1991;119(1 Pt 1):24–8.

    Article  CAS  PubMed  Google Scholar 

  38. Walzer N, Buchman AL. Development of Crohn’s disease in patients with intestinal failure: a role for bacteria? J Clin Gastroenterol. 2010;44(5):361–3.

    CAS  PubMed  Google Scholar 

  39. Freeman JJ, et al. Anti-TNF-alpha treatment for post-anastomotic ulcers and inflammatory bowel disease with Crohn’s-like pathologic changes following intestinal surgery in pediatric patients. Pediatr Surg Int. 2015;31(1):77–82.

    Article  PubMed  Google Scholar 

  40. Charbit-Henrion F, et al. Anastomotic ulcerations after intestinal resection in infancy. J Pediatr Gastroenterol Nutr. 2014;59(4):531–6.

    Article  PubMed  Google Scholar 

  41. Koboziev I, et al. Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med. 2014;68:122–33.

    Article  CAS  PubMed  Google Scholar 

  42. Reinoso Webb C, et al. Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology. 2016;23(2):67–80.

    Article  CAS  PubMed  Google Scholar 

  43. Peloquin JM, Nguyen DD. The microbiota and inflammatory bowel disease: insights from animal models. Anaerobe. 2013;24:102–6.

    Article  CAS  PubMed  Google Scholar 

  44. Dibaise JK, Young RJ, Vanderhoof JA. Enteric microbial flora, bacterial overgrowth, and short-bowel syndrome. Clin Gastroenterol Hepatol. 2006;4(1):11–20.

    Article  PubMed  Google Scholar 

  45. Terra RM, et al. Remaining small bowel length: association with catheter sepsis in patients receiving home total parenteral nutrition: evidence of bacterial translocation. World J Surg. 2000;24(12):1537–41.

    Article  CAS  PubMed  Google Scholar 

  46. Ziegler TR, Leader LM. Parenteral nutrition: transient or permanent therapy in intestinal failure? Gastroenterology. 2006;130(2 Suppl 1):S37–42.

    Article  CAS  PubMed  Google Scholar 

  47. Malik BA, et al. Diagnosis and pharmacological management of small intestinal bacterial overgrowth in children with intestinal failure. Can J Gastroenterol. 2011;25(1):41–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cole CR, et al. The rate of bloodstream infection is high in infants with short bowel syndrome: relationship with small bowel bacterial overgrowth, enteral feeding, and inflammatory and immune responses. J Pediatr. 2010;156(6):941–7. 947 e1.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zitomersky NL, et al. Risk factors, morbidity, and treatment of thrombosis in children and young adults with active inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2013;57(3):343–7.

    Article  CAS  PubMed  Google Scholar 

  50. Zitomersky NL, Verhave M, Trenor 3rd CC. Thrombosis and inflammatory bowel disease: a call for improved awareness and prevention. Inflamm Bowel Dis. 2011;17(1):458–70.

    Article  PubMed  Google Scholar 

  51. Fialho A, et al. Association between small intestinal bacterial overgrowth and deep vein thrombosis. Gastroenterol Rep (Oxf). 2016. [Epub ahead of print].

    Google Scholar 

  52. Gonzalez-Hernandez J, et al. Central venous thrombosis in children with intestinal failure on long-term parenteral nutrition. J Pediatr Surg. 2016;51(5):790–3.

    Article  PubMed  Google Scholar 

  53. Kelly DA. Intestinal failure-associated liver disease: what do we know today? Gastroenterology. 2006;130(2 Suppl 1):S70–7.

    Article  CAS  PubMed  Google Scholar 

  54. El Kasmi KC, et al. Toll-like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury. Hepatology. 2012;55(5):1518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Harris JK, et al. Specific microbiome changes in a mouse model of parenteral nutrition associated liver injury and intestinal inflammation. PLoS One. 2014;9(10):e110396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khoshini R, et al. A systematic review of diagnostic tests for small intestinal bacterial overgrowth. Dig Dis Sci. 2008;53(6):1443–54.

    Article  PubMed  Google Scholar 

  57. Normann E, et al. Intestinal microbial profiles in extremely preterm infants with and without necrotizing enterocolitis. Acta Paediatr. 2013;102(2):129–36.

    Article  PubMed  Google Scholar 

  58. Quigley EM, Quera R. Small intestinal bacterial overgrowth: roles of antibiotics, prebiotics, and probiotics. Gastroenterology. 2006;130(2 Suppl 1):S78–90.

    Article  CAS  PubMed  Google Scholar 

  59. Chen WC, Quigley EM. Probiotics, prebiotics & synbiotics in small intestinal bacterial overgrowth: opening up a new therapeutic horizon! Indian J Med Res. 2014;140(5):582–4.

    PubMed  PubMed Central  Google Scholar 

  60. Adachi JA, DuPont HL. Rifaximin: a novel nonabsorbed rifamycin for gastrointestinal disorders. Clin Infect Dis. 2006;42(4):541–7.

    Article  CAS  PubMed  Google Scholar 

  61. Saadi M, McCallum RW. Rifaximin in irritable bowel syndrome: rationale, evidence and clinical use. Ther Adv Chronic Dis. 2013;4(2):71–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shulman SHRJ. Prebiotics and probiotics. In: Christopher Duggan TJ, Gura KM, editors. Clinical management of intestinal failure. Boca Raton: CRC Press; 2012. p. 383–90.

    Google Scholar 

  63. Lichtenstein L, Avni-Biron I, Ben-Bassat O. Probiotics and prebiotics in Crohn’s disease therapies. Best Pract Res Clin Gastroenterol. 2016;30(1):81–8.

    Article  PubMed  Google Scholar 

  64. Lichtenstein L, Avni-Biron I, Ben-Bassat O. The current place of probiotics and prebiotics in the treatment of pouchitis. Best Pract Res Clin Gastroenterol. 2016;30(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  65. Hod K, Ringel Y. Probiotics in functional bowel disorders. Best Pract Res Clin Gastroenterol. 2016;30(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  66. Vanderhoof JA, et al. Treatment strategies for small bowel bacterial overgrowth in short bowel syndrome. J Pediatr Gastroenterol Nutr. 1998;27(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  67. Uchida K, et al. Immunonutritional effects during synbiotics therapy in pediatric patients with short bowel syndrome. Pediatr Surg Int. 2007;23(3):243–8.

    Article  PubMed  Google Scholar 

  68. Candy DC, et al. Effect of administration of lactobacillus casei shirota on sodium balance in an infant with short bowel syndrome. J Pediatr Gastroenterol Nutr. 2001;32(4):506–8.

    Article  CAS  PubMed  Google Scholar 

  69. Boyle RJ, Robins-Browne RM, Tang ML. Probiotic use in clinical practice: what are the risks? Am J Clin Nutr. 2006;83(6):1256–64. quiz 1446-7.

    CAS  PubMed  Google Scholar 

  70. Riquelme AJ, et al. Saccharomyces cerevisiae fungemia after Saccharomyces boulardii treatment in immunocompromised patients. J Clin Gastroenterol. 2003;36(1):41–3.

    Article  PubMed  Google Scholar 

  71. Salminen MK, et al. Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG. Clin Infect Dis. 2004;38(1):62–9.

    Article  PubMed  Google Scholar 

  72. Davidovics ZH, et al. Fecal transplantation successfully treats recurrent D-lactic acidosis in a child with short bowel syndrome. JPEN J Parenter Enteral Nutr. 2015.

    Google Scholar 

  73. Raphael BP, et al. Cisapride improves enteral tolerance in pediatric short-bowel syndrome with dysmotility. J Pediatr Gastroenterol Nutr. 2011;52(5):590–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ng PC, et al. High-dose oral erythromycin decreased the incidence of parenteral nutrition-associated cholestasis in preterm infants. Gastroenterology. 2007;132(5):1726–39.

    Article  CAS  PubMed  Google Scholar 

  75. Gomez R, et al. Effect of amoxicillin/clavulanate on gastrointestinal motility in children. J Pediatr Gastroenterol Nutr. 2012;54(6):780–4.

    Article  CAS  PubMed  Google Scholar 

  76. Modi BP, et al. Serial transverse enteroplasty for management of refractory D-lactic acidosis in short-bowel syndrome. J Pediatr Gastroenterol Nutr. 2006;43(3):395–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Soden MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Soden, J. (2016). Bacterial Overgrowth and Intestinal Microbiome. In: Rintala, R., Pakarinen, M., Wester, T. (eds) Current Concepts of Intestinal Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-42551-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42551-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42549-8

  • Online ISBN: 978-3-319-42551-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics