Skip to main content

Novel Fermented Grain-Based Products

  • Chapter
  • First Online:
Novel Food Fermentation Technologies

Part of the book series: Food Engineering Series ((FSES))

  • 2623 Accesses

Abstract

Fermentation of grains is an ancient method which helps increase the nutritional value and digestibility of grains, protects stomach from the harmful pathogens, improving absorption of bioactive molecules and minerals though the intestinal tract synergistically balancing the gut microbiota. Fermentation of grains is crucial for the bread manufacturing and producing a variety of beverages and nutritional drinks. The type of the grain substrate, methods of fermentation and type of the microorganisms involved into the fermentation process vary depends on geographical region and historical traditions. Grains fermentation process is used for production of ethanol, biofuel, enzymes and intermediates, micronutrients and amino acids, flavours and masking volatiles. This chapter is dedicated to an importance of the grain fermentation for the balanced and nourishing food, beverages and animal feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adom, K. K., Sorrells, M. E., & Liu, R. H. (2005). Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. Journal of Agricultural and Food Chemistry, 53(6), 2297–2306.

    Article  CAS  Google Scholar 

  • Arıcı, M., & Turan, O. D. (2007). Boza: Laktik Asit Fermantasyonu ile Üretilen Tahıl Kaynaklı Geleneksel Bir Türk Gıdası, Acısıyla Tatlısıyla Boza (pp. 76–87). Ankara: T.C. Kültür ve Turizm Bakanlığı.

    Google Scholar 

  • Banigo, E. O. I., & Muller, H. G. (1972). Manufacture of Ogi, a Nigerian fermented cereal porridge. Comparative evaluation of corn, sorghum and millet. Canadian Journal of Food Science and Technology, 5, 217–221.

    Article  CAS  Google Scholar 

  • Blandino, A., Al-Aseeri, M. E., Pandiella, S. S., Cantero, D., & Webb, C. (2003). Cereal-based fermented foods and beverages. Food Research International, 36(6), 527–543.

    Article  CAS  Google Scholar 

  • Celep, G. S., Rastmanesh, R., & Marotta, F. (2014). Chapter 43: Microbial metabolism of polyphenols and health. In R. R. Watson, V. R. Preedy, & S. Zibadi (Eds.), Polyphenols in human health and disease (pp. 577–589). San Diego, CA: Academic.

    Chapter  Google Scholar 

  • Charalampopoulos, D., Wang, R., Pandiella, S. S., & Webb, C. (2002). Application of cereals and cereal components in functional foods: A review. International Journal of Food Microbiology, 79(1), 131–141.

    Article  CAS  Google Scholar 

  • Chatenoud, L., Tavni, A., La Vecchia, C., Jacobs, D. R., Jr., Negri, E., Levi, F., et al. (1998). Whole grain food intake and cancer risk. International Journal of Cancer, 77, 24–28.

    Article  CAS  Google Scholar 

  • Chavan, J. K., & Kadam, S. S. (1989). Critical reviews in food science and nutrition. Food Science, 28, 348–400.

    Google Scholar 

  • Coda, R., Rizzello, C. G., Nigro, F., De Angelis, M., Arnault, P., & Gobbetti, M. (2008). Long-term fungal inhibitory activity of water-soluble extracts of Phaseolus vulgaris cv. Pinto and sourdough lactic acid bacteria during bread storage. Applied and Environmental Microbiology, 74, 7391–7398.

    Article  CAS  Google Scholar 

  • Coda, R., Rizzello, C. G., Pinto, D., & Gobbetti, M. (2012). Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Applied and Environmental Microbiology, 78(4), 1087–1096.

    Article  CAS  Google Scholar 

  • Corsetti, A., Gobbetti, M., De Marco, B., Balestrieri, F., Paoletti, F., Russi, L., et al. (2000). Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. Journal of Agricultural and Food Chemistry, 48(7), 3044–3051.

    Article  CAS  Google Scholar 

  • Corsetti, A., Gobbetti, M., Rossi, J., & Damiani, P. (1998). Antimould activity of sourdough lactic acid bacteria: Identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology, 50, 253–256.

    Article  CAS  Google Scholar 

  • Corsetti, A., & Settanni, L. (2007). Lactobacilli in sourdough fermentation. Food Research International, 40(5), 539–558.

    Article  CAS  Google Scholar 

  • Corsetti, A., Settanni, L., Valmorri, S., Mastrangelo, M., & Suzzi, G. (2007). Identification of subdominant sourdough lactic acid bacteria and their evolution during laboratory-scale fermentations. Food Microbiology, 24(6), 592–600.

    Article  CAS  Google Scholar 

  • Damiani, P., Gobbetti, M., Cossignani, L., Corsetti, A., Simonetti, M. S., & Rossi, J. (1996). The sourdough microflora. Characterization of hetero- and homofermentative lactic acid bacteria, yeasts and their interactions on the basis of the volatile compounds produced. Lebensmittel Wissenschaft und Technologie, 29, 63–70.

    Article  CAS  Google Scholar 

  • De Vuyst, L., & Vancanneyt, M. (2007). Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiology, 24(2), 120–127.

    Article  Google Scholar 

  • De Vuyst, L., & Vandamme, E. J. (1994). Antimicrobial potential of lactic acid bacteria. In L. De Vuyst & E. J. Vandamme (Eds.), Bacteriocins of lactic acid bacteria: Microbiology, genetics and applications (pp. 91–142). London: Blackie Academic and Professional.

    Chapter  Google Scholar 

  • Dostalek, P., Hochel, I., Mendez, E., Hernando, A., & Gabrovska, D. (2006). Immunochemical determination of gluten in malts and beers. Food Additives and Contaminants, 23, 1074–1078.

    Article  CAS  Google Scholar 

  • Economidou, P. L., & Steinkraus, K. H. (1993). Greek trahanas. In K. H. Steinkraus (Ed.), Handbook of indigenous fermented foods (pp. 299–304). New York: Marcel Dekker.

    Google Scholar 

  • FAO Source. (2003). 2000-2002 world beer production. BIOS International, 8(2), 47–50.

    Google Scholar 

  • Fastnaught, C. E. (2001). Barley fibre. In S. Cho & M. Dreher (Eds.), Handbook of dietary fibre (Vol. 113). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Gänzle, M. G., Häusle, S., & Hammes, W. P. (1997). Wechselwirkungen zwischen Laktobazillen und Hefen. Getreide Mehl Brot, 51, 209–215.

    Google Scholar 

  • Gerez, C. L., Torino, M. I., Rollán, G., & De Valdez, G. F. (2009). Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control, 20(2), 144–148.

    Article  CAS  Google Scholar 

  • Gribbins, K. (2013). Brewing vessels reviewed: Cylindroconical fermenters remain a craft beer staple. Retrieved March 24, 2016, from http://www.craftbrewingbusiness.com/equipment-systems/brewing-vessels-reviewed-cylindroconical-fermenters/

  • Gunkel, J., Voetz, M., & Rath, F. (2002). Effect of the malting barley variety (Hordeum vulgare L) on fermentability1. Journal of the Institute of Brewing, 108(3), 355–361.

    Article  CAS  Google Scholar 

  • Gupta, M., Abu‐Ghannam, N., & Gallaghar, E. (2010). Barley for brewing: Characteristic changes during malting, brewing and applications of its by‐products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 318–328.

    Article  CAS  Google Scholar 

  • Hager, A. S., Taylor, J. P., Waters, D. M., & Arendt, E. K. (2014). Gluten free beer—A review. Trends in Food Science & Technology, 36(1), 44–54.

    Article  CAS  Google Scholar 

  • Haggblade, S., & Holzapfel, W. H. (1989). Industrialization of Africa’s indigenous beer brewing. In K. H. Steinkraus (Ed.), Industrialization of indigenous fermented foods (pp. 191–283). New York: Marcel Dekker.

    Google Scholar 

  • Haggblade, S., & Holzapfel, W. H. (1993). African alcoholic beverages. In K. H. Steinkraus (Ed.), Handbook of indigenous fermented foods (pp. 407–416). New York: Marcel Dekker.

    Google Scholar 

  • Hamad, S. H., Böcker, G., Vogel, R. F., & Hammes, W. P. (1992). Microbiological and chemical analysis of fermented sorghum dough for Kisra production. Applied Microbiology and Biotechnology, 37, 728–731.

    Article  CAS  Google Scholar 

  • Hammes, W. P., Brandt, M. J., Francis, K. L., Rosenheim, J., Seitter, M. F., & Vogelmann, S. A. (2005). Microbial ecology of cereal fermentations. Trends in Food Science & Technology, 16(1), 4–11.

    Article  CAS  Google Scholar 

  • Hammes, W. P., & Gänzle, M. G. (1998). Sourdough breads and related products. In B. J. B. Wood (Ed.), Microbiology of fermented foods (2nd ed., Vol. 1, pp. 199–216). London: Blackie Academic and Professional.

    Chapter  Google Scholar 

  • Hoseney, R. C. (1994). Principles of cereal science and technology (2nd ed., p. 378). St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Ibanoglu, S., Ainsworth, P., Wilson, G., & Hayes, G. D. (1995). The effect of fermentation conditions on the nutrients and acceptability of tarhana. Food Chemistry, 53, 143–147.

    Article  CAS  Google Scholar 

  • Iwuoha, C. I., & Eke, O. S. (1996). Nigerian indigenous fermented foods: their traditional process operation, inherent problems, improvements and current status. Food Research International, 29, 527–540.

    Article  Google Scholar 

  • Kuboye, A. O. (1985). Traditional fermented foods and beverages of Nigeria. In Proceedings of the International Foundation for Science (IFS)/United Nations University (UNU). Workshop on Development of indigenous fermented foods and Food technology in Africa, Douala, Cameroon. pp. 225–236.

    Google Scholar 

  • Lavermicocca, P., Valerio, F., & Visconti, A. (2003). Antifungal activity of phenyllactic acid against molds isolated from bakery products. Applied and Environmental Microbiology, 69(1), 634–640.

    Article  CAS  Google Scholar 

  • Lee, J. H., Lee, S. K., Park, K. H., Hwang, I. K., & Ji, G. E. (1999). Fermentation of rice using amylolytic Bifidobacterium. International Journal of Food Microbiology, 50(3), 155–161.

    Article  CAS  Google Scholar 

  • Legan, J. D. (1993). Mould spoilage of bread: The problem and some solutions. International Biodeterioration & Biodegradation, 32(1), 33–53.

    Article  Google Scholar 

  • Maillard, M. N., Soum, M. H., Boivin, P., & Berset, C. (1996). Antioxidant activity of barley and malt: Relationship with phenolic content. LWT--Food Science and Technology, 29(3), 238–244.

    Article  CAS  Google Scholar 

  • Meussdoerffer, F. G. (2009). A comprehensive history of beer brewing. Handbook of brewing: Processes, technology, markets. Weinheim: Wiley.

    Google Scholar 

  • Mugula, J. K., Nnko, S. A. M., Narvhus, J. A., & Sørhaug, T. (2003). Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. International Journal of Food Microbiology, 80, 187–199.

    Article  CAS  Google Scholar 

  • Murooka, Y., & Yamshita, M. (2008). Traditional healthful fermented products of Japan. Journal of Industrial Microbial Biotechnology, 35(8), 791–798.

    Article  CAS  Google Scholar 

  • Mwesigye, P. K., & Okurut, T. O. (1995). A survey of the production and consumption of traditional alcoholic beverages in Uganda. Process Biochemistry, 30, 497–501.

    Article  CAS  Google Scholar 

  • Newman, C. W., & Newman, R. K. (2006). A brief history of barley foods. Cereal Foods World, 51(1), 4–7.

    Google Scholar 

  • Nout, M. J. R., & Ngoddy, P. O. (1997). Technological aspects of preparing affordable fermented complementary foods. Food Control, 8, 279–287.

    Article  Google Scholar 

  • OECD. (2005). Organization for Economic Co-operation and Development (OECD), 2005. Health data.

    Google Scholar 

  • Ogushi, K., Lim, P., Barr, A. R., Takahashi, S., Asakura, T., & Ito, K. (2002). Japanese barley meets Australia: Quality performance of malting barley grown in different countries. Journal of the Institute of Brewing, 108(3), 303–309.

    Article  Google Scholar 

  • Okarter, N., & Liu, R. H. (2010). Health benefits of whole grain phytochemicals. Critical Reviews in Food Science and Nutrition, 50(3), 193–208.

    Article  CAS  Google Scholar 

  • Olajire, A. A. (2012). The brewing industry and environmental challenges. Journal of Cleaner Production. doi:10.1016/j.jclepro.2012.03.003.

  • Picariello, G., Bonomi, F., Iametti, S., Rasmussen, P., Pepe, C., Lilla, S., et al. (2011). Proteomic and peptidomic characterisation of beer: Immunological and technological implications. Food Chemistry, 124(4), 1718–1726.

    Article  CAS  Google Scholar 

  • Quinde, Z., Ullrich, S. E., & Baik, B. K. (2004). Genotypic variation in color and discoloration potential of barley-based food products. Cereal Chemistry, 81(6), 752–758.

    Article  CAS  Google Scholar 

  • Research and Markets Report. (2015). Global beer market (types, production, category, packaging and geography)—Size, share, global trends, company profiles, demand, insights, analysis, opportunities, segmentation and forecast, 2014–2020.

    Google Scholar 

  • Rosen, S., Meade, B., Fuglie, K., & Rada, N. (2014). USDA Economic Research Service, GFA-25, June.

    Google Scholar 

  • Rosenquist, H., & Hansen, Å. (1998). The antimicrobial effect of organic acids, sour dough and nisin against Bacillus subtilis and B. licheniformis isolated from wheat bread. Journal of Applied Microbiology, 85(3), 621–631.

    Article  CAS  Google Scholar 

  • Sands, D. C., & Hankin, L. (1974). Selecting lysine-excreting mutants of lactobacilli for use in food and feed enrichment. Journal of Applied Microbiology, 28, 523–534.

    CAS  Google Scholar 

  • Sankaran, R. (1998). Fermented food of the Indian subcontinent. In J. B. Wood (Ed.), Microbiology of fermented foods (pp. 753–789). London: Blackie Academic and Professional.

    Chapter  Google Scholar 

  • Scheirlinck, I., Van der Meulen, R., Van Schoor, A., Vancanneyt, M., De Vuyst, L., Vandamme, P., et al. (2007). Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs. Applied and Environmental Microbiology, 73(19), 6262–6269.

    Article  CAS  Google Scholar 

  • Shurtleff, W., & Aoyagi, A. (2013). History of Koji—Grains and/or soybeans enrobed with a mold culture (300 BCE to 2012). Lafayette, CA: Soyinfo Center. (17 July–17 December 2012).

    Google Scholar 

  • Sindhu, S. C., & Khetarpaul, N. (2001). Probiotic fermentation of indigenous food mixture: effect on antinutrients and digestibility of starch and protein. Journal of Food Composition and Analysis, 14(6), 601–609.

    Article  CAS  Google Scholar 

  • Steinkraus, K. H. (1983). Fermented foods, feeds and beverages. Biotechnology Advances, 10, 31–46.

    Article  Google Scholar 

  • Steinkraus, K. H. (1998). Bio-enrichment: Production of vitamins in fermented foods. In J. B. Wood (Ed.), Microbiology of fermented foods (pp. 603–619). London: Blackie Academic and Professional.

    Chapter  Google Scholar 

  • Stolz, P., & Bocker, G. (1996). Technology, properties and applications of sourdough products. Advances in Food Science, 18, 234–236.

    Google Scholar 

  • Svanberg, U., & Sandberg, A. S. (1988). Improved iron availability in weaning foods through the use of germination and fermentation. In D. Alnwick, S. Moses, & S. Schmidt (Eds.), Improving young child feeding in Eastern and Southern Africa. Ottawa: IDRC.

    Google Scholar 

  • Vogel, R. F., & Gänzle, M. G. (2009). Bread is an essential part of human nutrition and culture. Editorial. Food Microbiology, 26(7), 665.

    Article  Google Scholar 

  • Wood, J. B. (1997). Microbiology of fermented foods. Glasgow, UK: Blackie Academic Press.

    Book  Google Scholar 

  • Yousif, N. E., & El Tinay, A. H. (2000). Effect of fermentation on protein fractions and in vitro protein digestibility of maize. Food Chemistry, 70(2), 181–184.

    Article  CAS  Google Scholar 

  • Zambrowicz, A., Timmer, M., Polanowski, A., Lubec, G., & Trziszka, T. (2013). Manufacturing of peptides exhibiting biological activity. Amino Acids, 44(2), 315–320.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mila Emerald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Emerald, M., Rajauria, G., Kumar, V. (2016). Novel Fermented Grain-Based Products. In: Ojha, K., Tiwari, B. (eds) Novel Food Fermentation Technologies. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42457-6_12

Download citation

Publish with us

Policies and ethics