Skip to main content

Antimicrobial Potential of Lactic Acid Bacteria

  • Chapter
Bacteriocins of Lactic Acid Bacteria

Abstract

The preservative effect of lactic acid bacteria during the manufacture and subsequent storage of fermented foods is mainly due to the acidic conditions that they create in the food during their development. This souring effect is primarily due to the fermentative conversion of carbohydrates to organic acids (lactic and acetic acid) with a concomitant lowering of the pH of the food, an important characteristic that leads to an increased shelf-life and safety of the final product. In recent decades, it has become clear that the overall inhibitory action of lactic acid bacteria is due to more complex antagonistic systems produced by the starter cultures. Lactic acid bacteria are capable of producing and excreting inhibitory substances other than lactic and acetic acid. These substances are antagonistic to a wide spectrum of microorganisms, and thus can make significant contributions to their preservative action. They are produced in much smaller amounts than lactic acid and acetic acid, and include formic acid, free fatty acids, ammonia, ethanol, hydrogen peroxide, diacetyl, acetoin, 2,3-butanediol, acetaldehyde, benzoate, bacteriolytic enzymes, bacteriocins and antibiotics, as well as several less well-defined or completely unidentified inhibitory substances (Klaenhammer, 1988; Daeschel, 1989; Lind-gren & Dobrogosz, 1990; Schillinger, 1990; Piard & Desmazeaud, 1991, 1992; Vandenbergh, 1993). Some of these substances display antagonistic activity towards many food spoilage and foodborne pathogenic microorganisms, including psychrotrophic lactobacilli and leuconostocs, Bacillus cereus, Clostridium botulinum, Clostridium perfringens, Listeria monocytogenes, Staphyloc-occus aureus, etc. The competitive removal of essential substrates, the accumulation of D-amino acids, a lowering of oxidation-reduction potential and coaggregation may further restrict undesirable microorganisms. Unfortunately, in some instances the antibiosis will be detrimental by inhibition of other desirable lactic strains composing the mixed starter culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Bar, N., Harris, N. D. & Rill, R. L. (1987).Purification and properties of an antimicrobial substance produced by Lactobacillus bulgaricus. J. Food Scl., 52, 411–415.

    Article  Google Scholar 

  • Adams, M. R. & Hall, C. J. (1988).Growth inhibition of food borne pathogens by lactic and acetic acids and their mixtures. Int. J. Food Sci. Technol., 23, 287–292.

    Article  Google Scholar 

  • Adamson, M. & Pruitt, K. M. (1981).Lactoperoxidase-catalyzed inactivation of hexokinase. Biochim. Biophys. Acta, 658, 238–247.

    Article  Google Scholar 

  • Ahn, C. & Stiles, M. E. (1990).Antibacterial activity of lactic acid bacteria isolated from vacuum-packaged meats. J. Appl. Bacteriol., 69, 302–310.

    Article  Google Scholar 

  • Al-Zoreky, N., Ayres, J. W. & Sandine, W. E. (1991).Antimicrobial activity of Microgardâ„¢ against food spoilage and pathogenic microorganisms. J. Dairy Scl., 74, 758–763.

    Article  Google Scholar 

  • Anders, R. F., Hogg, D. M. & Jago, G. R. (1970).Formation of hydrogen peroxide by group N streptococci and its effect on their growth and metabolism. Appl. Microbiol., 19, 602–612.

    Google Scholar 

  • Andersson, R. (1986).Inhibition of Staphylococcus aureus and spheroplasts of Gram-negative bacteria by an antagonistic compound produced by a strain of Lactobacillus plantarurn. Int. J. Food Microbiol., 3, 149–160.

    Article  Google Scholar 

  • Andersson, R. E., Daeschel, M. A. & Hassan, H. M. (1988).Antibacterial activity of plantaricin SIK-83, a bacteriocin produced by Lactobacillus plantarum. Biochimie, 70, 381–390.

    Article  Google Scholar 

  • Archibald, F. S. & Fridovich, I. (1981).Manganese, Superoxide dismutase and oxygen tolerance in some lactic acid bacteria. J. Bacteriol., 146, 928–936.

    Google Scholar 

  • Attaie, R., Whalen, P. J., Shahani, K. M. & Amer, M. A. (1987).Inhibition of growth of Staphylococcus aureus during production of acidophilus yogurt. J. Food Prot., 50, 224–228.

    Google Scholar 

  • Axelsson, L. T., Chung, T. C., Dobrogosz, W. J. & Lindgren, S. (1989).Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health Dis., 2, 131–136.

    Article  Google Scholar 

  • Babel, F. J. (1977).Antibiosis by lactic cultures bacteria. J. Dairy Sci., 60, 815–821.

    Article  Google Scholar 

  • Baird-Parker, A. C. (1980). Organic acids. In Microbial Ecology of Foods, ed. J. H. Silliker, R. P. Elliott, A. C. Baird-Parker, F. L. Bryan, J. H. B. Christian, D. S. Clark, J. C. Olson, Jr. & T. R. Roberts. Academic Press, New York, pp. 126–135.

    Google Scholar 

  • Barefoot, S. F. & Klaenhammer, T. R. (1983).Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol., 45, 1808–1815.

    Google Scholar 

  • Barefoot, S. F. & Klaenhammer, T. R. (1984).Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B. Antimicrob. Agents Chemother., 26, 328–334.

    Article  Google Scholar 

  • Batish, V. K., Grover, S. & Lal, R. (1989).Screening lactic starter cultures for antifungal activity. Cult. Dairy Prod. J., 24, 21–25.

    Google Scholar 

  • Berridge, N. J., Newton, G. G. F. & Abraham, E. P. (1952).Purification and nature of the antibiotic nisin. Biochem. J., 52, 529–535.

    Google Scholar 

  • Bhunia, A. K., Johnson, M. C. & Ray, B. (1987).Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Ind. Microbiol., 2, 319–322.

    Article  Google Scholar 

  • Bhunia, A. K., Johnson, M. C. & Ray, B. (1988).Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J. Appl. Bacteriol., 65, 261–268.

    Article  Google Scholar 

  • Bhunia, A. K., Johnson, M. C., Ray, B. & Kalchayanand, N. (1991).Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J. Appl. Bacteriol., 70, 25–33.

    Article  Google Scholar 

  • Biswas, S. R., Ray, P., Johnson, M. C. & Ray, B. (1991).Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol., 57, 1265–1267.

    Google Scholar 

  • Björck, L., Claesson, O. & Schulthess, W. (1979).The lactoperoxidase/ thiocyanate/hydrogen peroxide system as a temporary preservative for raw milk in developing countries. Milchwissenschaft, 34, 726–729.

    Google Scholar 

  • Borch, E., Wallentin, C., Rosén, M. & Björck, L. (1989).Antibacterial effect of the lactoperoxidase/thiocyanate/hydrogen peroxide system against strains of Campylobacter isolated from poultry. J. Food Prot., 52, 638–641.

    Google Scholar 

  • Branen, A. L., Go, H. C. & Genske, R. P. (1975).Purification and properties of antimicrobial substances produced by Streptococcus diacetylactis and Leuconostoc citrovorum. J. Food Sci., 40, 446–450.

    Article  Google Scholar 

  • Brock, T. D., Peacher, B. & Pierson, D. (1963).Survey of the bacteriocins of enterococci. J. Bacteriol., 86, 702–707.

    Google Scholar 

  • Buchman, G. W., Banerjee, S. & Hansen, J. N. (1988).Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem., 263, 16260–16266.

    Google Scholar 

  • Buckenhüskes, H. J. (1993).Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol. Rev., 12, 253–271.

    Article  Google Scholar 

  • Carminati, D., Giraffa, G. & Bossi, M. G. (1989).Bacteriocin-like inhibitors of Streptococcus lactis against Listeria monocytogenes. J. Food Prot., 52, 614–617.

    Google Scholar 

  • Cheeseman, G. C. & Berridge, N. J. (1957).An improved method of preparing nisin. Biochem. J., 65, 603–608.

    Google Scholar 

  • Christensen, D. P. & Hutkins, R. W. (1992).Collapse of the proton motive force in Listeria monocytogenes caused by a bacteriocin produced by Pediococcus acidilactici. Appl Environ. Microbiol., 58, 3312–3315.

    Google Scholar 

  • Chung, K. C. & Goepfert, J. M. (1970).Growth of Salmonella at low pH. J. Food Sci., 35, 326–328.

    Article  Google Scholar 

  • Chung, T. C., Axelsson, L., Lindgren, S. E. & Dobrogosz, W. J. (1989).In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microb. Ecol. Health Dis., 2, 137–144.

    Article  Google Scholar 

  • Cilano, L., Bossi, M. G. & Carini, S. (1990).Produzione di batteriocine da parte di Streptococcus thermophilus. Microbiol-Alim.-Nutr., 8, 21–30.

    Google Scholar 

  • Clark, D. S. & Takacs, J. (1980). Gases as preservatives. In Microbial Ecology of Foods, ed. J. H. Silliker. Academic Press, London, pp. 170–180.

    Google Scholar 

  • Cogan, T. M. (1986). The Leuconostocs: milk products. In Bacterial Starter Cultures for Foods, ed. S. E. Gilliland. CRC Press Inc., Boca Raton, Florida, pp. 25–40.

    Google Scholar 

  • Cogan, J. F., Walsh, D. & Condon, S. (1989).Impact of aeration on the metabolic end-products formed from glucose and galactose by Streptococcus lactis. J. Appl. Bacteriol., 66, 77–84.

    Article  Google Scholar 

  • Collins, E. B. (1961).Domination among strains of lactic streptococci with attention to antibiotic production. Appl Microbiol., 9, 200–205.

    Google Scholar 

  • Collins, E. B. & Aramaki, K. (1980).Production of hydrogen peroxide by Lactobacillus acidophilus. J. Dairy Sci., 63, 353–357.

    Article  Google Scholar 

  • Condon, S. (1983).Aerobic metabolism of lactic acid bacteria. Irish J. Food Sci. Technol., 7, 15–25.

    Google Scholar 

  • Condon, S. (1987).Responses of lactic acid bacteria to oxygen. FEMS Microbiol Rev., 46, 269–280.

    Article  Google Scholar 

  • Daba, H., Pandian, S., Gosselin, J. F., Simard, R. E., Huang, J. & Lacroix, C. (1991).Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl Envir. Microbiol., 57, 3450–3455.

    Google Scholar 

  • Daeschel, A. M. (1989).Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technol., 43, 91–94.

    Google Scholar 

  • Daeschel, M. A. & Klaenhammer, T. R. (1985).Association of a 13.6-megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Appl. Environ. Microbiol., 50, 1538–15341.

    Google Scholar 

  • Daeschel, M. A., McKenney, M. C. & McDonald, L. C. (1990).Bacteriocidal activity of Lactobacillus plantarurn C-11. Food Microbiol., 7, 91–98.

    Article  Google Scholar 

  • Dahiya, R. S. & Speck, M. L. (1968).Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J. Dairy Sci., 51, 1568–1572.

    Article  Google Scholar 

  • Dahl, T. A., Midden, W. R. & Hartman, P. E. (1989).Comparison of killing of Gram-negative and Gram-positive bacteria by pure singlet oxygen. J. Bacteriol., 171, 2188–2194.

    Google Scholar 

  • Daly, C., Sandine, W. E. & Elliker, P. R. (1972).Interactions of food starter cultures and food borne pathogens: Streptococcus diacetylactis versus food pathogens. J. Milk Food Technol., 35, 349–357.

    Google Scholar 

  • Daniels, H. J. (1966).Inhibition of growth of Pseudomonas denitrificans by amino acids. Can. J. Microbiol., 12, 1095–1098.

    Article  Google Scholar 

  • Davey, G. P. (1981).Mode of action of diplococcin, a bacteriocin from Streptococcus cremoris 346. N.Z.J. Dairy Sci. Technol., 16, 187–190.

    Google Scholar 

  • Davey, G. P. & Richardson, B. C. (1981).Purification and some properties of diplococcin from Streptococcus cremoris 346. Appl. Environ. Microbiol., 41, 84–89.

    Google Scholar 

  • Davis, J. G. (1971).Standards for yogurt. Dairy Ind., 36, 456–462.

    Google Scholar 

  • Degnan, A. J., Yousef, A. E. & Luchansky, J. B. (1992).Use of Pediococcus acidilactici to control Listeria monocytogenes in temperature-abused vacuum-packaged wieners. J. Food Prot., 55, 98–103.

    Google Scholar 

  • De Klerk, H. C. (1967).Bacteriocinogeny in Lactobacillus fermenti. Nature, 214, 609.

    Article  Google Scholar 

  • De Klerk, H. C. & Coetzee, J. N. (1961).Antibiosis among lactobacilli. Nature, 192, 340–341.

    Article  Google Scholar 

  • De Klerk, H. C. & Smit, J. A. (1967).Properties of a Lactobacillus fermenti bacteriocin. J. Gen. Microbiol., 48, 309–316.

    Article  Google Scholar 

  • De Vuyst, L. & Vandamme, E. J. (1991). Microbial manipulation of nisin biosynthesis and fermentation. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 397–409.

    Google Scholar 

  • De Vuyst, L. & Vandamme, E. J. (1992).Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J. Gen. Microbiol., 138, 571–578.

    Article  Google Scholar 

  • Dicks, L. M. T., van Jaarsveld, D. E. & van Vuuren, H. J. J. (1992). Caseicin LHS, a broad spectrum bacteriocin produced by Lactobacillus casel. Abstr. Book 7th Biennial Congress of the South African Soc. Microbiol., p. 214.

    Google Scholar 

  • Dionysius, D. A., Grieve, P. A. & Vos, A. C. (1992).Studies on the lactoperoxidase system: reaction kinetics and antibacterial activity using two methods for hydrogen peroxide generation. J. Appl. Bacteriol., 72, 146–153.

    Article  Google Scholar 

  • Dodd, H. M., Horn, N. & Gasson, M. J. (1990).Analysis of the genetic determinant for production of the peptide antibiotic nisin. J. Gen. Microbiol., 136, 555–566.

    Article  Google Scholar 

  • Drinan, D. F., Tobin, S. & Cogan, T. M. (1976).Citric acid metabolism in hetero-and homofermentative lactic acid bacteria. Appl. Environ. Microbiol., 31, 481–486.

    Google Scholar 

  • Dufour, A., Thuault, D., Boulliou, A., Bourgeois, C. M. & Le Pennec, J.-P. (1991).Plasmid-encoded determinants for bacteriocin production and immunity in a Lactococcus lactis strain and purification of the inhibitory peptide. J. Gen. Microbiol., 137, 2423–2429.

    Article  Google Scholar 

  • Eklund, T. (1984).The effect of carbon dioxide on bacterial growth and on uptake processes in the bacterial membrane vesicles. Int. J. Food Microbiol., 1, 179–185.

    Article  Google Scholar 

  • Elliker, P. R., Sandine, W. E., Hauser, B. A. & Moseley, W. K. (1964).Influence of culturing cottage cheese dressing with different organisms on flavor and keeping quality. J. Dairy Sci., 47, 680.

    Google Scholar 

  • Eltz, R. W. & Vandemark, P. J. (1960).Fructose dissimilation by Lactobacillus brevis. J. Bacteriol., 79, 763–766.

    Google Scholar 

  • Etchells, J. L., Costilow, R. N., Anderson, T. E. & Bell, T. A. (1964).Pure culture fermentation of brined cucumbers. Appl. Microbiol., 12, 523–535.

    Google Scholar 

  • Fleming, H. P., McFeeters, R. F. & Daeschel, M. A. (1986). The lactobacilli, pediococci, and leuconostocs: vegetable products. In Bacterial Starter Cultures for Foods, ed. S. E. Gilliland. CRC Press Inc., Boca Raton, Florida, pp. 97–118.

    Google Scholar 

  • Fujimura, S. & Nakamura, T. (1978).Purification and properties of a bacteriocin-like substance (acnecin) of oral Propionibacterium acnes. Antimicrob. Agents Chemother., 14, 893–898.

    Article  Google Scholar 

  • Geis, A., Singh, J. & Teuber, M. (1983).Potential of lactic streptococci to produce bacteriocin. Appl. Environ. Microbiol., 45, 205–211.

    Google Scholar 

  • Gilliland, S. E. (1986). Bacterial Starter Cultures for Foods. CRC Press Inc., Boca Raton, Florida.

    Google Scholar 

  • Gilliland, S. E. & Ewell, H. R. (1983).Influence of combinations of Lactobacillus lactis and potassium sorbate on growth of psychotrophs in raw milk. J. Dairy Sci., 66, 974.

    Article  Google Scholar 

  • Gilliland, S. E. & Speck, M. L. (1968).D-Leucine as an auto-inhibitor of lactic streptococci. J. Dairy Sci., 51, 1573–1578.

    Article  Google Scholar 

  • Gilliland, S. E. & Speck, M. L. (1972).Interactions of food starter cultures and food-borne pathogens: lactic streptococci versus staphylococci and salmonellae. J. Milk Food Technol., 35, 307–310.

    Google Scholar 

  • Gilliland, S. E. & Speck, M. L. (1974).Antagonism of lactic streptococci toward Staphylococcus aureus in associative milk cultures. Appl. Microbiol., 28, 1090.

    Google Scholar 

  • Gilliland, S. E. & Speck, M. C. (1975).Inhibition of psychotrophic bacteria by lactobacilli and pediococci in nonfermented refrigerated foods. J. Food Sci., 40, 903–905.

    Article  Google Scholar 

  • Gilliland, S. E. & Speck, M. C. (1977).Antagonistic action of Lactobacillus acidophilus towards intestinal and food-borne pathogens in associative culture. J. Food Prot., 40, 820–823.

    Google Scholar 

  • Goepfert, J. M. & Hicks, R. (1969).Effect of volatile fatty acids on Salmonella typhimurium. J. Bacteriol., 97, 956–958.

    Google Scholar 

  • Goepfert, J. M., Olson, N. F. & Marth, E. H. (1968).Behaviour of Salmonella typhimurium during manufacture and curing of Cheddar cheese. Appl. Microbiol., 16, 862–826.

    Google Scholar 

  • Gonzalez, C. F. & Kunka, B. S. (1987).Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl Environ. Microbiol., 53, 2534–2538.

    Google Scholar 

  • Gottschalk, G. (1979). Bacterial Metabolism. Springer-Verlag, New York.

    Book  Google Scholar 

  • Gratia, A. (1946).Techniques sélectives pour 1a recherche systématique des germes antibiotiques. C.R. Séances Soc. Biol. Paris, 140, 1053–1055.

    Google Scholar 

  • Grau, F. H. (1980).Inhibition of the anaerobic growth of Brochothrix thermosphacta by lactic acid. Appl. Environ. Microbiol., 40, 433–436.

    Google Scholar 

  • Grau, F. H. (1981).Role of pH, lactate, and anaerobiosis in controlling the growth of some fermentative gram-negative bacteria on beef. Appl. Environ. Microbiol., 42, 1043–1040.

    Google Scholar 

  • Grinstead, D. A. & Barefoot, S. F. (1992).Jenseniin G, a heat-stable bacteriocin produced by Propionibacterium jensenii P126. Appl Environ. Microbiol., 58, 215–220.

    Google Scholar 

  • Gupta, K. G., Chandiok, L. & Bhatnagar, L. (1973).Antibacterial activity of diacetyl and its influence on the keeping quality of milk. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. (Abt. 1 Orig. Reihe B), 158, 202–205.

    Google Scholar 

  • Haines, W. C. & Harmon, L. G. (1973).Effect of selected lactic acid bacteria on growth of Staphylococcus aureus and production of enterotoxin. Appl. Microbiol., 25, 436–444.

    Google Scholar 

  • Hamdan, I. Y. & Mikolajcik, E. M. (1973).Growth, viability, and antimicrobial activity of Lactobacillus acidophilus. J. Dairy Sci., 56, 638.

    Google Scholar 

  • Hamdan, I. Y. & Mikolajcik, E. M. (1974).Acidolin: an antibiotic produced by Lactobacillus acidophilus. J. Antibiot., 27, 631–636.

    Article  Google Scholar 

  • Harding, C. D. & Shaw, B. G. (1990).Antimicrobial activity of Leuconostoc gelidum against closely related species and Listeria monocytogenes. J. Appl. Bacteriol., 69, 648–654.

    Article  Google Scholar 

  • Hargrove, R. E., McDonough, F. E. & Mattingly, W. A. (1969).Factors affecting survival of Salmonella in cheddar and colby cheese. J. Milk Food Technol., 32, 480–484.

    Google Scholar 

  • Harris, L. J., Daeschel, M. A., Stiles, M. E. & Klaenhammer, T. R. (1989).Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. J. Food Prot., 52, 384–387.

    Google Scholar 

  • Hastings, J. W. & Stiles, M. E. (1991).Antibiosis of Leuconostoc gelidum isolated from meat. J. Appl. Bacteriol., 70, 127–134.

    Article  Google Scholar 

  • Hastings, J. W., Sailer, M., Johnson, K., Roy, K. L., Vederas, J. C. & Stiles, M. E. (1991).Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol., 173, 7491–500.

    Google Scholar 

  • Haugaard, N. (1968).Cellular mechanisms of oxygen toxicity. Physiol. Rev., 48, 311–373.

    Google Scholar 

  • Héchard, Y., Dherbomez, M., Cenatiempo, Y. & Letellier, F. (1990).Antagonism of lactic acid bacteria from goats’ milk against pathogenic strains assessed by the’ sandwich method’. Lett. Appl. Microbiol., 11, 185–188.

    Article  Google Scholar 

  • Héchard, Y., Derijard, B., Letellier, F. & Cenatiempo, Y. (1992). Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J. Gen. Microbiol. 138, 2725–27231.

    Article  Google Scholar 

  • Henderson, J. T., Chopko, A. L. & van Wassenaar, P. D. (1992).Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-10. Arch. Biochem. Biophys., 295, 5–12.

    Article  Google Scholar 

  • Hengstenberg, W., Kohlbrecher, D., Witt, E., Kruse, R., Christiansen, I., Peters, D., Pogge von Strandmann, R., Städler, P., Koch, B. & Kalbitzer, H.-R. (1993).Structure and function of proteins of the phosphotransferase system and of 6-phospho-β-glycosidases in Gram-positive bacteria. FEMS Microbiol. Rev., 12, 149–163.

    Google Scholar 

  • Hoick, A., Axelsson, L., Birkeland, S.-E., Aukrust, T. & Blom, H. (1992). Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Gen. Microbiol. 138, 2715–2720.

    Article  Google Scholar 

  • Holo, H. (1992). Lactococcin A. Paper presented at Biotieteen Päivät, Helsinki, Finland.

    Google Scholar 

  • Holo, H., Nilssen, O. & Nes, I. F. (1991).Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol., 173, 3879–3887.

    Google Scholar 

  • Hugenholtz, J. (1993).Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev., 12, 165–178.

    Article  Google Scholar 

  • Hurst, A. (1981).Nisin. Adv. Appl. Microbiol., 27, 85–123.

    Article  Google Scholar 

  • Iandolo, J. J., Clark, C. W., Bluhm, L. & Ordal, Z. J. (1965).Repression of Staphylococcus aureus in associative culture. Appl. Microbiol., 13, 646–649.

    Google Scholar 

  • Ingram, M., Ottoway, F. J. H. & Coppock, J. B. M. (1956).The preservative action of acid substances in food. Chem. Ind., 42, 1154–1165.

    Google Scholar 

  • Jay, J. M. (1982).Antimicrobial properties of diacetyl. Appl. Environ. Microbiol., 44, 525–532.

    Google Scholar 

  • Jay, J. M. (1986). In Modern Food Microbiology. Van Nostrand Reinhold, New York, p. 275.

    Google Scholar 

  • Jimenez-Diaz, R., Piard, J.-C., Ruiz-Barba, J. L. & Desmazeaud, M. J. (1990).Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO 10 isolated from a green olive fermentation. Appl. Environm. Microbiol., 59, 1416–1424.

    Google Scholar 

  • Joerger, M. C. & Klaenhammer, T. R. (1986).Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol., 167, 439–446.

    Google Scholar 

  • Joerger, M. C. & Klaenhammer, T. R. (1990).Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J. Bacteriol., 172, 6339–6347.

    Google Scholar 

  • Juffs, H. S. & Babel, F. J. (1975).Inhibition of psychrotrophic bacteria by lactic cultures in milk stored at low temperature. J. Dairy Sci., 58, 1612–1619.

    Article  Google Scholar 

  • Jung, G. (1991).Lantibiotics — ribosomally synthesized biologically active Polypeptides containing sulfide bridges and α β-didehydroamino acids. Angew. Chemie, 30, 1051–1068.

    Article  Google Scholar 

  • Kaletta, C. & Entian, K.-D. (1989).Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J. Bacteriol., 171, 1597–1601.

    Google Scholar 

  • Kanatani, K., Tahara, T., Yoshida, K., Miura, H., Sakamoto, M. & Oshimura, M. (1992).Plasmid-associated bacteriocin production by and immunity of Lactobacillus acidophilus TK8912. Biosci. Biotechnol. Biochem., 56, 648–651.

    Article  Google Scholar 

  • Kandier, O. (1983).Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49, 209–224.

    Article  Google Scholar 

  • Kandier, O., Schillinger, U. & Weiss, N. (1983).Lactobacillus bifermentans sp. nov., nom. rev., an organism forming CO2 and H2 from lactic acid. Syst. Appl. Microbiol., 4, 408–412.

    Article  Google Scholar 

  • Kao, C. T. & Frazier, W. C. (1966).Effect of lactic acid bacteria on growth of Staphylococcus aureus. Appl. Microbiol., 14, 251–255.

    Google Scholar 

  • Kavasnikov, F. J. & Sudenko, I. (1967).Antibiotic properties of Lactobacillus brevis. Mikrobiol. Zh. Kyyiv., 29, 146.

    Google Scholar 

  • Kékessy, D. A. & Piguet, J. D. (1970).New method for detection bacteriocin production. Appl. Microbiol., 20, 282–283.

    Google Scholar 

  • Klaenhammer, T. R. (1988).Bacteriocins of lactic acid bacteria. Biochimie, 70, 337–349.

    Article  Google Scholar 

  • Kleter, G., Lammers, W. L. & Vos, E. A. (1984).The influence of pH and concentration of lactic acid and NaCl on the growth of Clostridium tyrobutyricum in cheese. Neth. Milk Dairy J., 38, 31–41.

    Google Scholar 

  • Kodama, R. (1952).Studies on lactic acid bacteria. 2. Lactolin—a new antibiotic substance produced by lactic acid bacteria. J. Antibiot., 5, 72–74.

    Google Scholar 

  • Kojic, M., Svircevic, J., Banina, A. & Topisirovic, L. (1991).Bacteriocin-producing strain of Lactococcus lactis subsp. diacetilactis S50. Appl. Environ. Microbiol., 57, 1835–1837.

    Google Scholar 

  • Kong, S. & Davison, A. J. (1980).The role of interactions between O2, H2O2,. OH, e-and O2- in free radical damage to biological systems. Arch. Biochem. Biophys., 204, 13–29.

    Article  Google Scholar 

  • Kono, Y. & Fridovich, I. (1983).Isolation and characterization of the pseudocatalase of Lactobacillus plantarurn. J. Biol. Chem., 258, 6015–6019.

    Google Scholar 

  • Kozak, W., Bardowski, J. & Dobrzanski, W. T. (1977).Lactostrepcin — A bacteriocin produced by Streptococcus lactis. Bulletin de l’Académie Polonaise des Sciences (Série des Sciences Biologiques Cl. VI.), 25, 217–221.

    Google Scholar 

  • Kozak, W., Bardowski, J. & Dobrzanski, W. T. (1978).Lactostrepcins-acid bacteriocins produced by lactic streptococci. J. Dairy Res., 45, 247–257.

    Article  Google Scholar 

  • Kulshrestha, D. C. & Marth, E. H. (1970).Inhibition of lactic streptococci and some pathogenic bacteria by certain milk-associated volatile compounds as measured by the disc assay. J. Milk Food Technol., 33, 305–310.

    Google Scholar 

  • Kulshrestha, D. C. & Marth, E. H. (1974a).Inhibition of bacteria by some volatile and non-volatile compounds associated with milk. I. Escherichia coli. J. Milk Food Technol., 37, 510–516.

    Google Scholar 

  • Kulshrestha, D. C. & Marth, E. H. (1914b). Inhibition of bacteria by some volatile and non-volatile compounds associated with milk. II. Salmonella typhimurium. J. Milk Food Technol., 37, 539–544.

    Google Scholar 

  • Kulshrestha, D. C. & Marth, E. H. (1974c).Inhibition of bacteria by some volatile and non-volatile compounds associated with milk. III. Stapylococcus aureus. J. Milk Food Technol., 37, 545–550.

    Google Scholar 

  • Kulshrestha, D. C. & Marth, E. H. (1975).Inhibition of Streptococcus lactis and Salmonella typhimurium by mixtures of some volatile and non-volatile compounds associated with milk. J. Milk Food Technol., 38, 138–141.

    Google Scholar 

  • Larsen, A. G., Vogensen, F. K. & Josephsen, J. (1993).Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J. Appl. Bacteriol., 75, 113–122.

    Article  Google Scholar 

  • Law, B. A. & John, P. (1981).Effect of the lactoperoxidase bactericidal system on the formation of the electrico-chemical proton gradient in E. coli. FEMS Microbiol. Lett., 10, 67–70.

    Article  Google Scholar 

  • Lees, G. J. & Jago, J. R. (1978).Role of acetaldehyde in metabolism: a review. II. The metabolism of acetaldehyde in cultured dairy products. J. Dairy Scl., 61, 1216–1224.

    Article  Google Scholar 

  • Lewus, C. B., Kaiser, A. & Montville, T. J. (1991).Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl. Environ. Microbiol., 57, 1683–1688.

    Google Scholar 

  • Lewus, C. B., Sun, S. & Montville, T. J. (1992).Production of an amylase-sensitive bacteriocin by an atypical Leuconostoc paramesenteroides strain. Appl. Environ. Microbiol., 5, 143–149.

    Google Scholar 

  • Lin, J., Schmitt, P. & Diviés, C. (1991).Characterization of a citrate-negative mutant of Leuconostoc mesenteroides subsp. mesenteroides: metabolic and plasmidic properties. Appl Microbiol. Biotechnol., 34, 628–631.

    Article  Google Scholar 

  • Lindgren, S. & Clevström, G. (1978a).Antibacterial activity of lactic acid bacteria. 1. Activity of fish silage, a cereal starter and isolated organisms. Swedish J. Agric. Res., 8, 61–66.

    Google Scholar 

  • Lindgren, S. & Clevström, G. (1978b).Antibacterial activity of lactic acid bacteria. 2. Activity in vegetable silages, Indonesian fermented foods and starter cultures. Swedish J. Agric. Res., 8, 67–73.

    Google Scholar 

  • Lindgren, S. E. & Dobrogosz, W. J. (1990).Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev., 87, 149–164.

    Article  Google Scholar 

  • Lindgren, S. E., Axelsson, L. T. & McFeeters, R. F. (1990).Anaerobic L-lactate degradation by Lactobacillus plantarurn. FEMS Microbiol. Lett., 66, 209–214.

    Google Scholar 

  • London, J. (1990).Uncommon pathways of metabolism among lactic acid bacteria. FEMS Microbiol. Rev., 87, 103–112.

    Article  Google Scholar 

  • Lopez-Lara, I., Galvez, A., Martinez-Bueno, M., Maqueda, M. & Valdivia, E. (1991).Purification, characterization, and biological effects of a second bacteriocin from Enterococcus faecalis ssp. liquefaciens S-48 and its mutant strain B-48-28. Can. J. Microbiol., 37, 769–774.

    Article  Google Scholar 

  • Lyon, W. J. & Glatz, B. A. (1991).Partial purification and characterization of a bacteriocin produced by Propionibacterium thoenii. Appl Environ. Microbiol, 57, 701–706.

    Google Scholar 

  • Marciset, O. & Mollet, B. (1993). Characterization of thermophilin 13, a bacteriocin of Streptococcus thermophilus Sfi13. FEMS Microbiol. Rev., 12, P129, G25.

    Google Scholar 

  • Marshall, V. M. (1987).Lactic acid bacteria: starters for flavour. FEMS Microbiol. Rev., 46, 327–336.

    Article  Google Scholar 

  • Marshall, V. M. & Reiter, B. (1980).Comparison of the antibacterial activity of the hypothiocyanite anion towards Streptococcus lactis and Escherichia coli. J. Gen. Microbiol., 120, 513–516.

    Google Scholar 

  • Marshall, V. M. E., Cole, W. M. & Bramley, A. J. (1986).Influence of the lactoperoxidase system on susceptibility of the udder to Streptococcus uberis infection. J. Dairy Res., 53, 507–514.

    Article  Google Scholar 

  • Martin, D. R. & Gilliland, S. E. (1980).Inhibition of psychrotropic bacteria in refrigerated milk by lactobacilli isolated from yogurt. J. Food Prot., 43, 675–678.

    Google Scholar 

  • Marugg, J. D., Gonzalez, C. F., Kunka, B. S., Ledeboer, A. M., Pucci, M. J., Toonen, M. Y., Walker, S. A., Zoetmulder, L. C. M. & Vandenbergh, P. A. (1992).Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC 1-0. Appl. Environ. Microbiol., 58, 2360–2367.

    Google Scholar 

  • Mather, D. W. & Babel, F. J. (1959).Inhibition of certain types of bacterial spoilage in creamed cottage cheese by the use of a creaming mixture prepared with Streptococcus citrovorus. J. Dairy Sci., 42, 1917–1926.

    Article  Google Scholar 

  • Mathieu, F., Sudirman Suwandhi, I., Rekhif, N., Millière, J. B. & Lefebvre, G. (1993).Mesenterocin 52, a bacteriocin produced by Leuconostoc mesenteroides ssp. mesenteroides FR 52. J. Appl. Bacteriol., 74, 372–379.

    Article  Google Scholar 

  • Mattick, A. T. R. & Hirsch, A. (1944).A powerful inhibitory substance produced by group N streptococci. Nature, 154, 551.

    Article  Google Scholar 

  • Mattick, A. T. R. & Hirsch, A. (1947).Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet, 2, 5–7.

    Article  Google Scholar 

  • Mayr-Harting, A., Hedges, A. J. & Berkeley, R. C. W. (1972).Methods for studying bacteriocins. Methods Microbiol., 7A, 315–422.

    Article  Google Scholar 

  • McFeeters, R. F. & Chen, K.-H. (1986).Utilization of electron acceptors for anaerobic mannitol metabolism by Lactobacillus plantarum. Compounds which serve as electron acceptors. Food Microbiol., 3, 73–81.

    Article  Google Scholar 

  • McKay, L. L. (1983).Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek, 49, 259–274.

    Article  Google Scholar 

  • McKay, L. L. (1985). Roles of plasmids in starter cultures. In Bacterial Starter Cultures for Foods, ed. S. E. Gilliland. CRC Press Inc., Boca Raton, Florida, pp. 159–174.

    Google Scholar 

  • Meghrous, J., Euloge, P., Junelles, A. M., Ballongue, J. & Petitidemange, H. (1990).Screening of Bifidobacterium strains for bacteriocin production. Biotechnol. Lett., 12, 575–580.

    Article  Google Scholar 

  • Mickelson, M. N. (1966).Effect of lactoperoxidase and thiocyanate on the growth of Streptococcus pyogenes and Streptococcus agalactiae in chemically defined culture medium. J. Gen. Microbiol., 43, 31–43.

    Article  Google Scholar 

  • Mickelson, M. N. (1977).Glucose transport in Streptococcus agalactiae and its inhibition by lactoperoxidase-thiocyanate-hydrogen peroxide. J. Bacteriol., 132, 541–548.

    Google Scholar 

  • Morgan, S. & Hill, C. (1992). Lactocin D, a bacteriocin produced by Lactococcus lactis subsp. lactis biovar. diacetylactis DPC938. J. Gen. Microbiol. Submitted for publication.

    Google Scholar 

  • Morris, J. G. (1979). Nature of oxygen toxicity in anaerobic microorganisms. In Strategies of Microbial Life in Extreme Environments, ed. M. Shilo. Verlag Chemie, Berlin, pp. 149–162.

    Google Scholar 

  • Mortvedt, C. I. & Nes, I. F. (1990).Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J. Gen. Microbiol., 136, 1601–1607.

    Article  Google Scholar 

  • Mortvedt, C. I., Nissen-Meyer, J., Sletten, K. & Nes, I. F. (1991).Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl. Environ. Microbiol., 57, 1829–1834.

    Google Scholar 

  • Motlagh, A. M., Johnson, M. C. & Ray, B. (1991). Viability loss of foodborne pathogens by starter culture metabolites. J. Food Prot., 54, 873–878, 884.

    Google Scholar 

  • Mulders, J. W. M., Boerrigter, I. J., Rollema, H. S., Siezen, R. J. & de Vos, W. M. (1991).Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem., 201, 581–584.

    Article  Google Scholar 

  • Muriana, P. M. & Klaenhammer, T. R. (1987).Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88. Appl. Environ. Microbiol., 53, 553–560.

    Google Scholar 

  • Muriana, P. M. & Klaenhammer, T. R. (1991a).Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl. Environ. Microbiol., 57, 114–121.

    Google Scholar 

  • Muriana, P. M. & Klaenhammer, T. R. (1991b).Cloning, phenotypic expression, and DNA sequence of the gene for lactacin F, an antimicrobial peptide produced by Lactobacillus spp. J. Bacteriol., 173, 1779–1788.

    Google Scholar 

  • Nes, I. F. (1992). Non-nisin-like bacteriocins in lactic acid bacteria. Paper presented at Biotieteen Päivät, Helsinki, Finland.

    Google Scholar 

  • Nieto-Lozano, J. C., Nissen-Meyer, J., Sletten, K., Pelaz, C. & Nes, I. F. (1992).Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J. Gen. Microbiol., 138, 1985–1990.

    Article  Google Scholar 

  • Niku-Paavola, M. L. & Haikara, A. (1992). Microbicidic substances produced by lactic acid bacteria. Programme Abstracts Biotieteen Päivät, No. 3.

    Google Scholar 

  • Nissen-Meyer, J., HÃ¥varstein, L. S., Holo, H., Sletten, K. & Nes. I. F. (1993).Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J. Gen. Microbiol., 139, 1503–1509.

    Article  Google Scholar 

  • Nissen-Meyer, J., Holo, H., Hâvarstein, S., Sketten, K. & Nes, I. F. (1992).A novel lactococal bacteriocin whose activity depends on the complementary action of two Peptides. J. Bacteriol., 174, 5686–5692.

    Google Scholar 

  • Noda, F., Hayashi, K. & Mizunuma, T. (1980).Antagonism between osmophilic lactic acid bacteria and yeasts in brine fermentation of soy sauce. Appl. Environ. Microbiol., 40, 452–457.

    Google Scholar 

  • Okereke, A. & Montville, T. J. (1991a).Bacteriocin inhibition of Clostridium botulinum spores by lactic acid bacteria. J. Food Prot., 54, 349–353.

    Google Scholar 

  • Okereke, A. & Montville, T. J. (19916).Bacteriocin-mediated inhibition of Clostridium botulinum spores by lactic acid bacteria at refrigeration and abuse temperatures. Appl. Environ. Microbiol., 57, 3423–3438.

    Google Scholar 

  • Oram, J. D. & Reiter, B. (1966a).The inhibition of streptococci by lactoperoxidase, thiocyanate and hydrogen peroxide. I. The effect of the inhibitory system on susceptible and resistant strains of group N streptococci. Biochem. J., 100, 373–381.

    Google Scholar 

  • Oram, J. D. & Reiter, B. (1966b).The inhibition of streptococci by lactoperoxidase, thiocyanate and hydrogen peroxide. II. The oxidation of thiocyanate and the nature of the inhibitory compound. Biochem. J., 100, 382–388.

    Google Scholar 

  • Orla-Jensen, S. (1919). The Lactic Acid Bacteria. Anhr. ed. Host and Son, Copenhagen.

    Google Scholar 

  • Oxford, A. E. (1944).Diplococcin, an anti-bacterial protein elaborated by certain milk streptococci. Biochem. J., 38, 178–182.

    Google Scholar 

  • Parente, E. & Hill, C. (1992).Characterization of enterocin 1146, a bacteriocin from Enterocoecus faecium inhibitory to Listeria monocytogenes. J. Food Prot., 55, 497–502.

    Google Scholar 

  • Park, H. S., Marth, E. H. & Olson, N. F. (1973).Fate of enteropathogenic strains of Escherichia coli during manufacture and ripening of Camembert cheese. J. Milk Food Technol., 36, 543–546.

    Google Scholar 

  • Paul, G. E. & Booth, S. J. (1988).Properties and characteristics of a bacteriocin-like substance produced by Propionibacterium acnes isolated from dental plaque. Can. J. Microbiol., 34, 1344–1374.

    Article  Google Scholar 

  • Piard, J.-C. & Desmazeaud, M. (1991).Inhibiting factors produced by lactic acid bacteria. 1. Oxygen metabolites and catabolism end-products. Lait, 71, 525–541.

    Article  Google Scholar 

  • Piard, J.-C. & Desmazeaud, M. (1992).Inhibiting factors produced by lactic acid bacteria. 2. Bacteriocins and other antibacterial substances. Lait, 72, 113–142.

    Article  Google Scholar 

  • Piard, J.-C., Delorme, F., Giraffa, G., Commissaire, J. & Desmazeaud, M. (1990).Evidence for a bacteriocin produced by Lactococcus lactis CNRZ 481. Neth. Milk Dairy J., 44, 143–158.

    Google Scholar 

  • Piard, J.-C., Kuipers, O. P., Rollema, H. S., Desmazeaud, M. J. & De Vos, W. M. (1993).Structure, organization and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis subsp. lactis CNRZ 481. J. Biol. Chem., 268, 16361–16368.

    Google Scholar 

  • Piard, J.-C., Muriana, P. M., Desmazeaud, M. J. & Klaenhammer, T. R. (1992).Purification and partial characterization of lacticin 481, a lanthionine-containing bacteriocin produced by Lactococcus lactis subsp. lactis CNRZ 481. Appl Environ. Microbiol., 58, 279–284.

    Google Scholar 

  • Pinheiro, A. J. R., Liska, B. J. & Parmelee, C. E. (1968a).Properties of substances inhibitory to Pseudomonas fragi produced by Streptococcus citrovorus and Streptococcus diacetilactis. J. Dairy Sci., 57, 183–187.

    Article  Google Scholar 

  • Pinheiro, A. J. R., Liska, B. J. & Parmelee, C. E. (19686).Inhibitory effect of selected organic materials on Pseudomonas fragi. J. Dairy. Sci., 51, 223–224.

    Article  Google Scholar 

  • Poolman, B. (1993).Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev., 12, 125–147.

    Article  Google Scholar 

  • Powell, I. B., Ward, A. C., Hillier, A. J. & Davidson, B. E. (1990).Simultaneous conjugal transfer in Lactococcus to genes involved in bacteriocin production and reduced susceptibility to bacteriophages. FEMS Microbiol. Lett., 72, 209–214.

    Article  Google Scholar 

  • Price, R. J. & Lee, J. S. (1970).Inhibition of Pseudomonas species by hydrogen peroxide producing lactobacilli. J. Milk Food Technol., 33, 13–18.

    Google Scholar 

  • Pruitt, K. M. & Reiter, B. (1985). Biochemistry of peroxidase system. In The Lactoperoxidase System’. Chemistry and Biological Significance, ed. K. M. Pruitt & J. Tenovuo. Marcel Dekker Inc., New York, pp. 143–178.

    Google Scholar 

  • Pulusani, S. R., Rao, D. R. & Sunki, G. R. (1979).Antimicrobial activity of lactic cultures: partial purification and characterization of antimicrobial compound(s) produced by Streptococcus thermophilus. J. Food Sci., 44, 575–578.

    Article  Google Scholar 

  • Purdy, M. A., Tenovuo, J., Pruitt, K. M. & White, W. E. (1983).Effect of growth phase and cell envelope structure on susceptibility of Salmonella typhimurium to the lactoperoxidase thiocyanate hydrogen peroxide system. Infect. Immun., 39, 1187–1195.

    Google Scholar 

  • Quadri, L. E. N., Sailer, M., Roy, K. L., Vederas, J. C. & Stiles, M. E. (1992). Characterization and genetic determinants of bacteriocins produced by Carnobacterium piscicola LV17B. Paper presented at the Annual Meeting of the American Society for Microbiology, New Orleans.

    Google Scholar 

  • Raccach, M., McGrath, R. & Daftarian, H. (1989).Antibiosis of some lactic acid bacteria including Lactobacillus acidophilus toward Listeria monocytogenes. Int. J. Food Microbiol., 9, 25–32.

    Article  Google Scholar 

  • Ramanathan, S., Read, G. & Cutting, W. (1966).Purification of propionin, an antiviral agent from Propionibacteria. Proc. Soc. Exp. Biol. Med., 123, 271–273.

    Google Scholar 

  • Ramanathan, S., Wolynec, C. & Cutting, W. (1968).Antiviral principles of Propionibacteria — isolation and antiviral activity of propionins B and C. Proc. Soc. Exp. Biol. Med., 129, 73–77.

    Google Scholar 

  • Rammeisberg, M. & Radler, F. (1990).Antibacterial Polypeptides of Lactobacillus species. J. Appl. Bacteriol., 69, 177–184.

    Article  Google Scholar 

  • Rammelsberg, M., Müller, E. & Radler, F. (1990).Caseicin 80: purification and characterization of a new bacteriocin from Lactobacillus casei. Arch. Microbiol., 154, 249–252.

    Article  Google Scholar 

  • Rayman, K. & Hurst, A. (1984). Nisin: properties, biosynthesis and fermentation. In Biotechnology of Industrial Antibiotics, ed. E. J. Vandamme. Marcel Dekker, New York, pp. 607–628.

    Google Scholar 

  • Reddy, G. V. & Ranganathan, B. (1983a).Preliminary studies on antimicrobial activity of Streptococcus lactis subsp. diacetylactis. J. Food Prot., 46, 222–225.

    Google Scholar 

  • Reddy, G. V. & Ranganathan, B. (19836).Nutritional factors affecting growth and production of antimicrobial substances by Streptococcus lactis subsp. diacetylactis S1-67/C. J. Food Prot., 46, 514–517.

    Google Scholar 

  • Reddy, G. V. & Shahani, K. M. (1971).Isolation of an antibiotic from Lactobacillus bulgaricus. J. Dairy Sci., 54, 748.

    Article  Google Scholar 

  • Reid, G., McGroarty, J. A., Angotti, R. & Cook, R. L. (1988).Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol., 34, 344–351.

    Article  Google Scholar 

  • Reinbold, G. W. (1986). The Propionibacteria: milk products. In Bacterial Starter Cultures for Foods, ed. S. E. Gilliland. CRC Press Inc., Boca Raton, Florida, pp. 73–84.

    Google Scholar 

  • Reinheimer, J. A., Candioti, M. C., Zalazar, C. A. & Demkow, M. R. (1988).Inibizione dei batteri coliformi con colture commerciali di Streptococcus thermo-philus e Lactobacillus bulgaricus. Scienza e Tecnica Lattiero-Casearia, 39, 349–366.

    Google Scholar 

  • Reiter, B. (1985). The biological significance of the non-immunoglobulin protective proteins in milk: lysozyme, lactoferrin, lactoperoxidase. In Developments in Dairy Chemistry, ed. P. F. Fox. Elsevier Applied Science Publishers, London, pp. 281–336.

    Chapter  Google Scholar 

  • Reiter, B. & Härnulv, G. (1984).Lactoperoxidase antibacterial system: natural occurrence, biological functions and practical applications. J. Food Prot., 47, 724–732.

    Google Scholar 

  • Reiter, B., Marshall, V. M., Björck, L. & Rosén, C. G. (1976).Nonspecific bactericidal activity of the lactoperoxidase-thiocyanate-hydrogen peroxide system of milk against Escherichia coli and some Gram-negative pathogens. Infect. Immun., 13, 800–807.

    Google Scholar 

  • Richardson, R. K. & Gray, I. K. (1981).The levels of natural benzoic acid in casein and whey by-products. N.Z.J. Dairy Sci. Technol., 16, 179–186.

    Google Scholar 

  • Richter, K. S., Mustapha, A., Liewen, M. B. & Hutkins, R. W. (1989). Properties of a bacteriocin produced by a Pediococcus sp. active against Listeria monocytogenes. Abstract Book 89th Annual meeting of the American Society for Microbiology, New Orleans, LA, p.8.

    Google Scholar 

  • Rogers, L. A. (1928).The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J. Bacteriol., 16, 321–325.

    Google Scholar 

  • Roth, L. A. & Clark, D. S. (1975).Effect of lactobacilli and carbon dioxide on the growth of Microbacterium thermosphactum on fresh beef. Can. J. Microbiol., 21, 629–632.

    Article  Google Scholar 

  • Rubin, H. E. & Vaughan, F. (1979).Elucidation of the inhibitory factors of yogurt against Salmonella typhimurium. J. Dairy Sci., 62, 1873–1879.

    Article  Google Scholar 

  • Sabine, D. B. (1963).An antibiotic-like effect of Lactobacillus acidophilus. Nature, 199, 811.

    Article  Google Scholar 

  • Sahl, H.-G. (1991). Pore formation in bacterial membranes by cationic lantibiotics. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 347–358.

    Google Scholar 

  • Salih, M. A., Sandine, W. E. & Ayres, J. W. (1990).Inhibitory effects of Microgardâ„¢ on yogurt and cottage cheese spoilage organisms. J. Dairy Sci., 73, 887–893.

    Article  Google Scholar 

  • Sandholm, M., Ali-Vehmas, T., Kaartinen, L. & Junnila, M. (1988).Glucose oxidase (GOD) as a source of hydrogen peroxide for the lactoperoxidase (LPO) system in milk: antibacterial effect of the GOD-LPO system against mastitis pathogens. J. Vet. Med. (Series B), 35, 346–352.

    Article  Google Scholar 

  • Sandine, W. E. (1986). The streptococci: milk products. In Bacterial Starter Cultures for Foods, ed. S. E. Gilliland. CRC Press Inc., Boca Raton, Florida, pp. 5–23.

    Google Scholar 

  • Schaack, M. M. & Marth, E. H. (1988a).Behavior of Listeria monocytogenes in skim milk during fermentation with mesophilic lactic starter cultures. J. Food Prot., 51, 600–606.

    Google Scholar 

  • Schaack, M. M. & Marth, E. H. (1988b).Behavior of Listeria monocytogenes in skim milk and in yogurt mix during fermentation by thermophilic acid bacteria. J. Food Prot., 51, 607–614.

    Google Scholar 

  • Scherwitz, K. M., Baldwin, K. A. & McKay, L. L. (1983).Plasmid linkage of a bacteriocin-like substance in Streptococcus lactis subsp. diacetylactis strain WM4: transferability to Streptococcus lactis. Appl. Environ. Microbiol., 45, 1506–1512.

    Google Scholar 

  • Schillinger, U. (1990). Bacteriocins of lactic acid bacteria. In Biotechnology and Food Safety, ed. D. D. Bills & S. D. Kung. Butterworth-Heinemann, Boston, pp. 55–74.

    Google Scholar 

  • Schillinger, U. & Lücke, F.-K. (1989).Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol., 55, 1901–1906.

    Google Scholar 

  • Schillinger, U., Stiles, M. E. & Holzapfel, W. H. (1993). Bacteriocin production by Carnebacterium pisciola LV61 J. Appl. Bacteriol., submitted for publication.

    Google Scholar 

  • Schnell, N., Entian, K.-D., Schneider, U., Gotz, F., Zahner, H., Kellner, R. & Jung, G. (1988).Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature, 333, 276–278.

    Article  Google Scholar 

  • Schröder, K., Clausen, E., Sandberg, A. M. & Raa, J. (1979). Psychrotrophic Lactobacillus plantarum from fish and its ability to produce antibiotic substances. In Advances in Fish Science and Technology, ed. J. J. Conell. News Books, London, pp. 480–483.

    Google Scholar 

  • Schütz, H. & Radler, F. (1984).Anaerobic reduction of glycerol to propanediol-1.3 by Lactobacillus brevis and Lactobacillus buchneri. Sys. Appl. Microbiol., 5, 169–178.

    Article  Google Scholar 

  • Schved, F., Lalazar, A., Henis, Y. & Juven, B. J. (1993).Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. J. Appl. Bacteriol., 74, 67–77.

    Article  Google Scholar 

  • Shearman, C., Underwood, H., Jury, K. & Gasson, M. (1989).Cloning and DNA sequence analysis of a Lactococcus bacteriophage lysin gene. Mol. Gen. Genet., 218, 214–221.

    Article  Google Scholar 

  • Shearman, C. A., Jury, K. & Gasson, M. F. (1992).Autolytic Lactococcus lactis expressing a lactococcal bacteriophage lysin gene. Biotechnology, 10, 196–199.

    Article  Google Scholar 

  • Silva, M., Jacobus, N. V., Deneke, C. & Gorbach, S. L. (1987).Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother., 31, 1231–1233.

    Article  Google Scholar 

  • Siragusa, G. R. & Johnson, M. G. (1989).Inhibition of Listeria monocytogenes growth by the lactoperoxidase-thiocyanate-H2O2 antimicrobial system. Appl. Environ. Microbiol., 55, 2802–2805.

    Google Scholar 

  • Skaugen, M., Abildgard, C. I. M., Nissen-Meyer, J. & Nes, I. F. (1992). Molecular cloning and sequencing of the lactocin S structural gene. Programme Abstracts Biotieteen Päivät, Helsinki, Finland, no. 2.

    Google Scholar 

  • Smaczny, T. & Krämer, J. (1984).Säuerungsstörungen in der Joghurt-, Bioghurt®-und Biogarde®-Produktion, bedingt durch Bacteriocine und Bakteriophagen von Streptococcus thermophilus. Deutsche Molkerei-Zeit., 15, 460–464.

    Google Scholar 

  • Sorrells, K. M. & Speck, M. L. (1970).Inhibition of Salmonella gallinarum by culture filtrates of Leuconostoc citrovorum. J. Dairy Sci., 53, 239–241.

    Article  Google Scholar 

  • Speck, M. L. (1972).Control of food-borne pathogens by starter cultures. J. Dairy Sci., 55, 1019–1022.

    Article  Google Scholar 

  • Spelhaug, S. R. & Harlander, S. K. (1989).Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceus. J. Food Prot., 52, 856–862.

    Google Scholar 

  • Spillmann, H., Puhan, Z. & Banhegyi, M. (1978).Antimikrobielle aktivität thermo-philer lactobazillen. Milchwissenschaft, 33, 148–153.

    Google Scholar 

  • Starrenburg, M. J. C. & Hugenholtz, J. (1991).Citrate fermentation by Lactococcus and Leuconostoc spp. Appl. Environ. Microbiol., 57, 3535–3540.

    Google Scholar 

  • Stoddard, G. W., Petzel, J. P., Van Belkum, M. J., Kok, J. & McKay, L. L. (1992).Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl. Environ. Microbiol., 58, 1952–1961.

    Google Scholar 

  • Stoffels, G., Nissen-Meyer, J., Gudmundsdottir, A., Sletten, K., Holo, H. & Nes, I. F. (1992).Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl. Environ. Microbiol., 58, 1417–1422.

    Google Scholar 

  • Strasser de Saad, A. M. & Manca de Nadra, M. C. (1993).Characterization of bacteriocin produced by Pediococcus pentosaceus from wine. J. Appl. Bacteriol., 74, 406–410.

    Article  Google Scholar 

  • Tagg, J. R. & McGiven, A. R. (1971).Assay system for bacteriocins. Appl. Microbiol., 21, 943.

    Google Scholar 

  • Tagg, J. R., Dajani, A. S. & Wannamaker, L. W. (1976).Bacteriocins of Gram-positive bacteria. Bacteriol. Rev., 40, 722–756.

    Google Scholar 

  • Talarico, T. L. & Dobrogosz, W. J. (1989).Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 33, 674–679.

    Article  Google Scholar 

  • Talarico, T. L., Casas, I. A., Chung, T. C. & Dobrogosz, W. J. (1988).Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 32, 1854–1858.

    Article  Google Scholar 

  • Talon, R., Labadie, J. & Larpent, J. P. (1980).Characterization of the inhibitory power of Lactobacillus of meat origin. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. (Abt. 1 Orig. Reihe B), 170, 133.

    Google Scholar 

  • Teeri, A. E. (1954).Effect of D-amino acids on growth of lactobacilli. J. Bacteriol., 67, 686–689.

    Google Scholar 

  • Ten Brink, B., Huis in’ t veld, J. H. J. & Minekus, M. (1990).Antimicrobial activity of Lactobacillus M46: optimization of production and partial characterization. FEMS Microbiol. Rev., 87, 91.

    Article  Google Scholar 

  • Tenovuo, J., Mansson-Rahemtulla, B., Pruitt, K. M. & Arnold, R. R. (1981).Inhibition of dental plaque acid production by the salivary lactoperoxidase antimicrobial system. Infect. Immun., 34, 208–214.

    Google Scholar 

  • Thomas, E. L. (1981).Lactoperoxidase-catalyzed oxidation of thiocyanate: equilibria between oxidized forms of thiocyanate. Biochem., 20, 3273–3280.

    Article  Google Scholar 

  • Thomas, E. L. (1985). Bacterial hydrogen peroxide production. In The Lactoperoxidase System, ed. K. M. Pruitt & J. Tenovuo. Marcel Dekker Inc., New York, pp. 179–202.

    Google Scholar 

  • Thomas, E. L., Pera, K. A., Smith, K. W. & Chwang, A. K. (1983).Inhibition of Streptococcus mutans by the lactoperoxidase antimicrobial system. Infect. Immun., 39, 767–778.

    Google Scholar 

  • Thomas, T. D., Ellwood, D. C. & Longyear, V. M. C. (1979).Changes from homo-to heterofermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat culture. J. Bacteriol., 138, 109–117.

    Google Scholar 

  • Thompson, J. (1987).Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol. Rev., 46, 221–231.

    Article  Google Scholar 

  • Thompson, J. (1988).Lactic acid bacteria: model systems for in vivo studies of sugar transport and metabolism in Gram-positive organisms. Biochimie, 70, 325–336.

    Article  Google Scholar 

  • Thuault, D., Beliard, E., Le Guern, J. & Bourgeois, C.-M. (1991).Inhibition of Clostridium tyrobutyricum by bacteriocin-like substances produced by lactic acid bacteria. J. Dairy Sci., 74, 1145–1150.

    Article  Google Scholar 

  • Tichaczek, P. S., Nissen-Meyer, J., Nes, I. F., Vogel, R. F. & Hammes, W. P. (1992).Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. System. Appl. Microbiol., 15, 460–468.

    Article  Google Scholar 

  • Toba, T., Samant, S. K., Yoshioka, E. & Itoh, T. (1991a).Reuterin 6, a new bacteriocin produced by Lactobacillus reuteri LA 6. Lett. Appl. Microbiol., 13, 281–286.

    Article  Google Scholar 

  • Toba, T., Yoshioka, E. & Itoh, T. (1991b).Lacticin, a bacteriocin produced by Lactobacillus delbrueckii subsp. lactis. Lett. Appl. Microbiol., 12, 43–45.

    Article  Google Scholar 

  • Toba, T., Yoshioka, E. & Itoh, T. (1991c).Acidophilucin A, a new heat-labile bacteriocin produced by Lactobacillus acidophilus LAPT 1060. Lett. Appl. Microbiol., 12, 106–108.

    Article  Google Scholar 

  • Toba, T., Yoshioka, E. & Itoh, T. (1991d).Potential of Lactobacillus gasseri isolated from infant faeces to produce bacterocin. Lett. Appl Microbiol., 12, 228–231.

    Article  Google Scholar 

  • Tramer, J. (1966).Inhibitory effect of Lactobacillus acidophilus. Nature, 211, 204–205.

    Article  Google Scholar 

  • Upreti, G. C. & Hinsdill, R. D. (1973).Isolation and characterization of a bacteriocin from a homofermentative Lactobacillus. Antimicrob. Agents Chemother., 4, 487–494.

    Article  Google Scholar 

  • Upreti, G. C. & Hinsdill, R. D. (1975).Production and mode of action of lactocin 27: bacteriocin from a homofermentative Lactobacillus. Antimicrob. Agents Chemother., 7, 139–145.

    Article  Google Scholar 

  • Vakil, J. R. & Shahani, K. M. (1965). Partial purification of antibacterial activity of Lactobacillus acidophilus. Bacteriol. Proc., p9.

    Google Scholar 

  • Van Belkum, M. J., Hayema, B. J., Geis, A., Kok, J. & Venema, G. (1989).Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl. Environ. Microbiol., 55, 1187–11891.

    Google Scholar 

  • Van Belkum, M. J., Hayema, B. J., Jeeninga, R. E., Kok, J. & Venema, G. (1991a).Organization and nucleotide sequences of two lactococcal bacteriocin operons. Appl. Environ. Microbiol., 57, 492–498.

    Google Scholar 

  • Van Belkum, M. J., Kok, J., Venema G., Holo, H., Nes, I. F., Konings, W. N. & Abee, T. (1991b).The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J. Bacteriol., 173, 7934–7941.

    Google Scholar 

  • Van Belkum, M. J., Kok, J. & Venema, G. (1992).Cloning, sequencing, and expression in Escherichia coli of lcn B, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4-6. Appl. Environ. Microbiol., 58, 572–577.

    Google Scholar 

  • Vandenbergh, P. A. (1993).Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev., 12, 221–237.

    Article  Google Scholar 

  • Van Jaarsveld, D. E., Dicks, L. M. T. & van Vuuren, H. J. J. (1992). Inhibition of Leuconostoc oenos and Saccharomyces cerevisiae by lactic acid bacteria isolated from South African red wines and sherry. Abstr. Book 7th Biennial Congress of the South African Soc. Microbiol., p 89.

    Google Scholar 

  • Vaughan, E. E., Daly, C. & Fitzgerald, G. F. (1992).Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J. Appl. Bacteriol., 73, 299–308.

    Article  Google Scholar 

  • Venema, K., Abee, T., Haandrikman, A. J., Leenhouts, K. J., Kok, J., Konings, W. N. & Venema, G. (1993).Mode of action of lactococcin B, a thiol-activated bacteriocin from Lactococcus lactis. Appl. Environ. Microbiol., 59, 1041–1048.

    Google Scholar 

  • Villani, F., Salzano, G., Sorrentino, E., Pepe, O., Marino, P. & Coppola, S. (1993).Enterocin 226NWC, a bacteriocin produced by Enterococcus faecalis 226, active against Listeria monocytogenes. J. Appl. Bacteriol., 74, 380–387.

    Article  Google Scholar 

  • Vincent, J. G., Veomett, R. C. & Riley, R. F. (1959).Antibacterial activity associated with Lactobacillus acidophilus. J. Bacteriol., 178, 477–484.

    Google Scholar 

  • Visser, R., Holzapfel, W. H., Bezuidenhout, J. J. & Kotzé, J. M. (1986).Antagonism of lactic acid bacteria against phytopathogenic bacteria. Appl. Environ. Microbiol., 52, 552–555.

    Google Scholar 

  • Weber, G. H. & Broich, W. A. (1986).Shelf-life extension of cultured dairy foods. Cult. Dairy Prod. J., 21, 19.

    Google Scholar 

  • West, C. A. & Warner, P. J. (1988).Plantacin B, a bacteriocin produced by Lactobacillus plantarum NCDO 1193. FEMS MicrobioL Lett., 49, 163–165.

    Google Scholar 

  • Westhoff, D. C. & Engler, T. (1972).The fate of Salmonella typhimurium and Staphylococcus aureus in cottage cheese whey. J. Milk Food Technol., 36, 19–22.

    Google Scholar 

  • Wheater, D. M., Hirsch, A. & Mattick, A. T. R. (1951).‘Lactobacillin’, an antibiotic from lactobacilli. Nature, 168, 659.

    Article  Google Scholar 

  • Wheater, D. M., Hirsch, A. & Mattick, A. T. R. (1952).Possible identity of ‘lactobacillin’ with hydrogen peroxide produced by lactobacilli. Nature (London), 170, 623–624.

    Article  Google Scholar 

  • Wilson, C. L. & Pusey, P. L. (1985).Potential for biological control of postharvest plant diseases. Plant Dis., 69, 375–378.

    Article  Google Scholar 

  • Wong, H. C. & Chen, Y. L. (1988).Effects of lactic acid bacteria and organic acids on growth and germination of Bacillus cereus. Appl. Environ. Microbiol., 54, 2179–2784.

    Google Scholar 

  • Worobo, R. W., Henkel, T., Roy, K. L., Vederas, J. C. & Stiles, M. E. (1992). Characterization and genetic determinants of carnobacteriocin isolated from Carnobacterium piscicola LV17A. Paper presented at the Annual Meeting of the American Society for Microbiology, New Orleans.

    Google Scholar 

  • Wray, C. & McLaren, I. (1987).A note on the effect of the lactoperoxidase systems on salmonellas in vitro and in vivo. J. Appl. Bacteriol., 62, 115–118.

    Article  Google Scholar 

  • Yang, R., Johnson, M. C. & Ray, B. (1992).Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol., 58, 3355–3359.

    Google Scholar 

  • Zajdel, J. K. & Dobrzanski, W. T. (1983).Isolation and preliminary characterization of Streptococcus cremoris (strain 202) bacteriocin. Acta Microbiol. Pol., 32, 119–129.

    Google Scholar 

  • Zajdel, J. K., Ceglowski, P. & Dobrzanski, W. T. (1985).Mechanism of action of lactostrepcin 5, a bacteriocin produced by Streptococcus cremoris 202. Appl. Environ. Microbiol., 49, 969–974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Vuyst, L., Vandamme, E.J. (1994). Antimicrobial Potential of Lactic Acid Bacteria. In: De Vuyst, L., Vandamme, E.J. (eds) Bacteriocins of Lactic Acid Bacteria. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2668-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2668-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6146-6

  • Online ISBN: 978-1-4615-2668-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics