Skip to main content

Energy Homeostasis of Immune Cells: Translating Cell Bioenergetics into Clinical Application in Rheumatoid Arthritis

  • Chapter
  • First Online:
Next-Generation Therapies and Technologies for Immune-Mediated Inflammatory Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

  • 657 Accesses

Abstract

Rheumatoid arthritis is a chronic inflammatory disease of unknown etiology and complex immune molecular and cellular pathophysiology. Despite recent advances in basic and clinical research, current therapeutic options against rheumatoid arthritis are not completely successful, inducing only partial responses or even failing. Reasons for this include complex intercommunicating molecular networks driving disease progression and thus redundant and compensatory mechanisms that often offset the beneficial effects of therapeutic intervention and difficulty in patient classification, which hampers adequate subject stratification in clinical trials, and treatment selection for patients. Recent renewed focus on cell metabolism has shed light into how cell bioenergetics constrains and determines the spectrum of immune function, with promising results. However, clinical application of these findings is lagging. The present chapter puts forth a strategy to translate concepts derived from immune cell bioenergetics into clinical use against rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sacks JJ, Luo YH, Helmick CG (2010) Prevalence of specific types of arthritis and other rheumatic conditions in the ambulatory health care system in the United States, 2001–2005. Arthritis Care Res (Hoboken) 62:460–464

    Article  Google Scholar 

  2. Birnbaum H, Pike C, Kaufman R, Marynchenko M, Kidolezi Y, Cifaldi M (2010) Societal cost of rheumatoid arthritis patients in the US. Curr Med Res Opin 26:77–90

    Article  PubMed  Google Scholar 

  3. Tabas I, Glass CK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science (New York, NY) 339:166–172

    Article  CAS  Google Scholar 

  4. Burmester GR, Feist E, Dorner T (2014) Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol 10:77–88

    Article  CAS  PubMed  Google Scholar 

  5. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219

    Article  CAS  PubMed  Google Scholar 

  6. Smolen JS, Aletaha D (2015) Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat Rev Rheumatol 11:276–289

    Article  PubMed  Google Scholar 

  7. Rantapaa-Dahlqvist S, de Jong BA, Berglin E, Hallmans G, Wadell G, Stenlund H et al (2003) Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 48:2741–2749

    Article  PubMed  CAS  Google Scholar 

  8. Catrina AI, Ytterberg AJ, Reynisdottir G, Malmstrom V, Klareskog L (2014) Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat Rev Rheumatol 10:645–653

    Article  CAS  PubMed  Google Scholar 

  9. Smolen JS, Steiner G (2003) Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2:473–488

    Article  CAS  PubMed  Google Scholar 

  10. Otero M, Goldring MB (2007) Cells of the synovium in rheumatoid arthritis. Chondrocytes. Arthritis Res Ther 9:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fujikawa Y, Sabokbar A, Neale S, Athanasou NA (1996) Human osteoclast formation and bone resorption by monocytes and synovial macrophages in rheumatoid arthritis. Ann Rheum Dis 55:816–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chabaud M, Fossiez F, Taupin JL, Miossec P (1998) Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 161:409–414

    CAS  PubMed  Google Scholar 

  13. Ishikawa H, Smiley JD, Ziff M (1975) Electron microscopic demonstration of immunoglobulin deposition in rheumatoid cartilage. Arthritis Rheum 18:563–576

    Article  CAS  PubMed  Google Scholar 

  14. Cascao R, Rosario HS, Souto-Carneiro MM, Fonseca JE (2010) Neutrophils in rheumatoid arthritis: more than simple final effectors. Autoimmun Rev 9:531–535

    Article  CAS  PubMed  Google Scholar 

  15. Schuerwegh AJ, Ioan-Facsinay A, Dorjee AL, Roos J, Bajema IM, van der Voort EI et al (2010) Evidence for a functional role of IgE anticitrullinated protein antibodies in rheumatoid arthritis. Proc Natl Acad Sci U S A 107:2586–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR (2000) Macrophages in rheumatoid arthritis. Arthritis Res 2:189–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Listing J, Strangfeld A, Rau R, Kekow J, Gromnica-Ihle E, Klopsch T et al (2006) Clinical and functional remission: even though biologics are superior to conventional DMARDs overall success rates remain low – results from RABBIT, the German biologics register. Arthritis Res Ther 8:R66

    Article  PubMed  PubMed Central  Google Scholar 

  18. van Vollenhoven RF (2011) Unresolved issues in biologic therapy for rheumatoid arthritis. Nat Rev Rheumatol 7:205–215

    Article  PubMed  CAS  Google Scholar 

  19. Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ (2012) Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev 248:188–204

    Article  PubMed  PubMed Central  Google Scholar 

  20. Straub RH (2014) Rheumatoid arthritis – a neuroendocrine immune disorder: glucocorticoid resistance, relative glucocorticoid deficiency, low-dose glucocorticoid therapy, and insulin resistance. Arthritis Res Ther 16(Suppl 2):I1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Buchman TG (2002) The community of the self. Nature 420:246–251

    Article  CAS  PubMed  Google Scholar 

  22. Lemons JM, Feng XJ, Bennett BD, Legesse-Miller A, Johnson EL, Raitman I et al (2010) Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8:e1000514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dufort FJ, Gumina MR, Ta NL, Tao Y, Heyse SA, Scott DA et al (2014) Glucose-dependent de novo lipogenesis in B lymphocytes: a requirement for atp-citrate lyase in lipopolysaccharide-induced differentiation. J Biol Chem 289:7011–7024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jang KJ, Mano H, Aoki K, Hayashi T, Muto A, Nambu Y et al (2015) Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat Commun 6:6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biniecka M, Canavan M, McGarry T, Gao W, McCormick J, Cregan S et al (2016) Dysregulated bioenergetics: a key regulator of joint inflammation. Ann Rheum Dis Published Online First: [24 March 2016] doi:10.1136/annrheumdis-2015-208476

  26. Garcia-Carbonell R, Divakaruni AS, Lodi A, Vicente-Suarez I, Saha A, Cheroutre H et al (2016) Critical role of fibroblast-like synoviocytes glycolytic metabolism in rheumatoid arthritis. Arthritis Rheumatol 68:1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  28. Odegaard JI, Chawla A (2011) Alternative macrophage activation and metabolism. Annu Rev Pathol 6:275–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu Y, Maianu L, Melbert BR, Garvey WT (2004) Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Blood Cells Mol Dis 32:182–190

    Article  CAS  PubMed  Google Scholar 

  30. Tan Z, Xie N, Banerjee S, Cui H, Fu M, Thannickal VJ et al (2015) The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem 290:46–55

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P et al (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185:605–614

    Article  CAS  PubMed  Google Scholar 

  32. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G et al (2013) Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295:E242–E253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Veal CD, Reekie KE, Lorentzen JC, Gregersen PK, Padyukov L, Brookes AJ (2014) A 129-kb deletion on chromosome 12 confers substantial protection against rheumatoid arthritis, implicating the gene SLC2A3. Hum Mutat 35:248–256

    Article  CAS  PubMed  Google Scholar 

  35. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P et al (2012) The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 15:813–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garedew A, Moncada S (2008) Mitochondrial dysfunction and HIF1alpha stabilization in inflammation. J Cell Sci 121:3468–3475

    Article  CAS  PubMed  Google Scholar 

  37. Everts B, Amiel E, van der Windt GJ, Freitas TC, Chott R, Yarasheski KE et al (2012) Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120:1422–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A 95:7631–7636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ (2009) An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37:4587–4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  CAS  Google Scholar 

  42. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hollander AP, Corke KP, Freemont AJ, Lewis CE (2001) Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum 44:1540–1544

    Article  CAS  PubMed  Google Scholar 

  44. Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B et al (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11:417–422

    Article  CAS  PubMed  Google Scholar 

  45. Kim S, Hwang J, Xuan J, Jung YH, Cha HS, Kim KH (2014) Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. PLoS One 9:e97501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Melo RC, D’Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF (2011) Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J Histochem Cytochem 59:540–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378

    Article  CAS  PubMed  Google Scholar 

  48. Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY et al (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol 15:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Funk JL, Feingold KR, Moser AH, Grunfeld C (1993) Lipopolysaccharide stimulation of RAW 264.7 macrophages induces lipid accumulation and foam cell formation. Atherosclerosis 98:67–82

    Article  CAS  PubMed  Google Scholar 

  50. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kerekes G, Nurmohamed MT, Gonzalez-Gay MA, Seres I, Paragh G, Kardos Z et al (2014) Rheumatoid arthritis and metabolic syndrome. Nat Rev Rheumatol 10:691–696

    Article  CAS  PubMed  Google Scholar 

  52. Tall AR, Yvan-Charvet L (2015) Cholesterol, inflammation and innate immunity. Nat Rev Immunol 15:104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hahn BH, Grossman J, Ansell BJ, Skaggs BJ, McMahon M (2008) Altered lipoprotein metabolism in chronic inflammatory states: proinflammatory high-density lipoprotein and accelerated atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res Ther 10:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sattar N, McInnes IB (2005) Vascular comorbidity in rheumatoid arthritis: potential mechanisms and solutions. Curr Opin Rheumatol 17:286–292

    Article  PubMed  Google Scholar 

  55. Sattar N, McCarey DW, Capell H, McInnes IB (2003) Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108:2957–2963

    Article  PubMed  Google Scholar 

  56. Kelly B, Tannahill GM, Murphy MP, O’Neill LA (2015) Metformin inhibits the production of reactive oxygen species from NADH: ubiquinone oxidoreductase to limit induction of interleukin-1beta (IL-1beta) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J Biol Chem 290:20348–20359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kang KY, Kim YK, Yi H, Kim J, Jung HR, Kim IJ et al (2013) Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int Immunopharmacol 16:85–92

    Article  CAS  PubMed  Google Scholar 

  58. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS et al (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR et al (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D et al (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Powell JD, Pollizzi KN, Heikamp EB, Horton MR (2012) Regulation of immune responses by mTOR. Annu Rev Immunol 30:39–68

    Article  CAS  PubMed  Google Scholar 

  64. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Powell JD, Delgoffe GM (2010) The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33:301–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24:400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M, Cheng X et al (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40:692–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14:500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, Zwerina J et al (2010) Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum 62:2294–2302

    Article  CAS  PubMed  Google Scholar 

  70. Carlson RP, Baeder WL, Caccese RG, Warner LM, Sehgal SN (1993) Effects of orally administered rapamycin in animal models of arthritis and other autoimmune diseases. Ann N Y Acad Sci 685:86–113

    Article  CAS  PubMed  Google Scholar 

  71. Bruyn GA, Tate G, Caeiro F, Maldonado-Cocco J, Westhovens R, Tannenbaum H et al (2008) Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study. Ann Rheum Dis 67:1090–1095

    Article  CAS  PubMed  Google Scholar 

  72. Warner LM, Adams LM, Sehgal SN (1994) Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum 37:289–297

    Article  CAS  PubMed  Google Scholar 

  73. Fernandez D, Bonilla E, Mirza N, Niland B, Perl A (2006) Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum 54:2983–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Flores-Borja F, Jury EC, Mauri C, Ehrenstein MR (2008) Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc Natl Acad Sci U S A 105:19396–19401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Panayi GS (2006) Even though T-cell-directed trials have been of limited success, is there reason for optimism? Nat Clin Pract Rheumatol 2:58–59

    Article  PubMed  Google Scholar 

  76. Miossec P, Verweij CL, Klareskog L, Pitzalis C, Barton A, Lekkerkerker F et al (2011) Biomarkers and personalised medicine in rheumatoid arthritis: a proposal for interactions between academia, industry and regulatory bodies. Ann Rheum Dis 70:1713–1718

    Article  CAS  PubMed  Google Scholar 

  77. Wehling M (2010) Principles of translational science in medicine: from bench to bedside. Cambridge University Press, Cambridge/New York, xxii, 382 p., 24 p. of plates p

    Google Scholar 

  78. Butler D (2008) Translational research: crossing the valley of death. Nature 453:840–842

    Article  CAS  PubMed  Google Scholar 

  79. Arrowsmith J (2012) A decade of change. Nat Rev Drug Discov 11:17–18

    Article  CAS  PubMed  Google Scholar 

  80. Tak PP (2005) Analyzing synovial tissue samples. What can we learn about early rheumatoid arthritis, the heterogeneity of the disease, and the effects of treatment? J Rheumatol Suppl 72:25–26

    PubMed  Google Scholar 

  81. Raza K, Filer A (2015) The therapeutic window of opportunity in rheumatoid arthritis: does it ever close? Ann Rheum Dis 74:793–794

    Article  PubMed  Google Scholar 

  82. Biomarkers Definitions Working G (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  83. Robinson WH, Lindstrom TM, Cheung RK, Sokolove J (2013) Mechanistic biomarkers for clinical decision making in rheumatic diseases. Nat Rev Rheumatol 9:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jameson JL, Longo DL (2015) Precision medicine – personalized, problematic, and promising. N Engl J Med 372:2229–2234

    Article  CAS  PubMed  Google Scholar 

  86. Semerano L, Romeo PH, Boissier MC (2015) Metabolomics for rheumatic diseases: has the time come? Ann Rheum Dis 74:1325–1326

    Article  PubMed  Google Scholar 

  87. Fitzpatrick M, Young SP (2013) Metabolomics – a novel window into inflammatory disease. Swiss Med Wkly 143:w13743

    PubMed  PubMed Central  Google Scholar 

  88. Kapoor SR, Filer A, Fitzpatrick MA, Fisher BA, Taylor PC, Buckley CD et al (2013) Metabolic profiling predicts response to anti-tumor necrosis factor alpha therapy in patients with rheumatoid arthritis. Arthritis Rheum 65:1448–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Madsen RK, Lundstedt T, Gabrielsson J, Sennbro CJ, Alenius GM, Moritz T et al (2011) Diagnostic properties of metabolic perturbations in rheumatoid arthritis. Arthritis Res Ther 13:R19

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kang J, Zhu L, Lu J, Zhang X (2015) Application of metabolomics in autoimmune diseases: insight into biomarkers and pathology. J Neuroimmunol 279:25–32

    Article  CAS  PubMed  Google Scholar 

  91. Volchenkov R, Dung Cao M, Elgstoen KB, Goll GL, Eikvar K, Bjorneboe O et al (2016) Metabolic profiling of synovial tissue shows altered glucose and choline metabolism in rheumatoid arthritis samples, Scandinavian Journal of Rheumatology, doi:10.3109/03009742.2016.1164242

  92. Urasaki Y, Johlfs MG, Fiscus RR, Le TT (2012) Imaging immune and metabolic cells of visceral adipose tissues with multimodal nonlinear optical microscopy. PLoS One 7:e38418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bozza PT, Viola JP (2010) Lipid droplets in inflammation and cancer. Prostaglandins Leukot Essent Fatty Acids 82:243–250

    Article  CAS  PubMed  Google Scholar 

  94. Coimbra A, Lopes-Vaz A (1971) The presence of lipid droplets and the absence of stable sudanophilia in osmium-fixed human leukocytes. J Histochem Cytochem 19:551–557

    Article  CAS  PubMed  Google Scholar 

  95. Hakumaki JM, Kauppinen RA (2000) 1H NMR visible lipids in the life and death of cells. Trends Biochem Sci 25:357–362

    Article  CAS  PubMed  Google Scholar 

  96. Asquith DL, Ballantine LE, Nijjar JS, Makdasy MK, Patel S, Wright PB et al (2013) The liver X receptor pathway is highly upregulated in rheumatoid arthritis synovial macrophages and potentiates TLR-driven cytokine release. Ann Rheum Dis 72:2024–2031

    Article  CAS  PubMed  Google Scholar 

  97. Wu BJ, Ong KL, Shrestha S, Chen K, Tabet F, Barter PJ et al (2014) Inhibition of arthritis in the Lewis rat by apolipoprotein A-I and reconstituted high-density lipoproteins. Arterioscler Thromb Vasc Biol 34:543–551

    Article  PubMed  CAS  Google Scholar 

  98. Benson RA, McInnes IB, Brewer JM, Garside P (2015) Cellular imaging in rheumatic diseases. Nat Rev Rheumatol 11:357–367

    Article  CAS  PubMed  Google Scholar 

  99. Sevick-Muraca EM (2012) Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med 63:217–231

    Article  CAS  PubMed  Google Scholar 

  100. Griffiths HR (2005) ROS as signalling molecules in T cells – evidence for abnormal redox signalling in the autoimmune disease, rheumatoid arthritis. Redox Rep 10:273–280

    Article  CAS  PubMed  Google Scholar 

  101. Datta S, Kundu S, Ghosh P, De S, Ghosh A, Chatterjee M (2014) Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clin Rheumatol 33:1557–1564

    Article  PubMed  Google Scholar 

  102. Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J et al (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater 6:765–769

    Article  CAS  PubMed  Google Scholar 

  103. Rueden CT, Conklin MW, Provenzano PP, Keely PJ, Eliceiri KW (2009) Nonlinear optical microscopy and computational analysis of intrinsic signatures in breast cancer. Conf Proc IEEE Eng Med Biol Soc 2009:4077–4080

    PubMed  Google Scholar 

  104. Quinn KP, Sridharan GV, Hayden RS, Kaplan DL, Lee K, Georgakoudi I (2013) Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep 3:3432

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ostrander JH, McMahon CM, Lem S, Millon SR, Brown JQ, Seewaldt VL et al (2010) Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res 70:4759–4766

    Article  CAS  PubMed  Google Scholar 

  106. Palmer S, Litvinova K, Rafailov EU, Nabi G (2015) Detection of urinary bladder cancer cells using redox ratio and double excitation wavelengths autofluorescence. Biomed Opt Express 6:977–986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Walsh AJ, Cook RS, Manning HC, Hicks DJ, Lafontant A, Arteaga CL et al (2013) Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res 73:6164–6174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Phipps J, Sun Y, Saroufeem R, Hatami N, Fishbein MC, Marcu L (2011) Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques. J Biomed Opt 16:096018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Polisson RP, Schoenberg OI, Fischman A, Rubin R, Simon LS, Rosenthal D et al (1995) Use of magnetic resonance imaging and positron emission tomography in the assessment of synovial volume and glucose metabolism in patients with rheumatoid arthritis. Arthritis Rheum 38:819–825

    Article  CAS  PubMed  Google Scholar 

  110. Matsui T, Nakata N, Nagai S, Nakatani A, Takahashi M, Momose T et al (2009) Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis. J Nucl Med 50:920–926

    Article  CAS  PubMed  Google Scholar 

  111. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711

    Article  CAS  PubMed  Google Scholar 

  112. Rose S, Sheth NH, Baker JF, Ogdie A, Raper A, Saboury B et al (2013) A comparison of vascular inflammation in psoriasis, rheumatoid arthritis, and healthy subjects by FDG-PET/CT: a pilot study. Am J Cardiovasc Dis 3:273–278

    PubMed  PubMed Central  Google Scholar 

  113. Maki-Petaja KM, Elkhawad M, Cheriyan J, Joshi FR, Ostor AJ, Hall FC et al (2012) Anti-tumor necrosis factor-alpha therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation 126:2473–2480

    Article  PubMed  CAS  Google Scholar 

  114. Wang SC, Xie Q, Lv WF (2014) Positron emission tomography/computed tomography imaging and rheumatoid arthritis. Int J Rheum Dis 17:248–255

    Article  PubMed  Google Scholar 

  115. Okamura K, Yonemoto Y, Arisaka Y, Takeuchi K, Kobayashi T, Oriuchi N et al (2012) The assessment of biologic treatment in patients with rheumatoid arthritis using FDG-PET/CT. Rheumatology (Oxford) 51:1484–1491

    Article  CAS  Google Scholar 

  116. Gutte H, Hansen AE, Henriksen ST, Johannesen HH, Ardenkjaer-Larsen J, Vignaud A et al (2015) Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner. Am J Nucl Med Mol Imaging 5:38–45

    CAS  PubMed  Google Scholar 

  117. Dafni H, Larson PE, Hu S, Yoshihara HA, Ward CS, Venkatesh HS et al (2010) Hyperpolarized 13C spectroscopic imaging informs on hypoxia-inducible factor-1 and myc activity downstream of platelet-derived growth factor receptor. Cancer Res 70:7400–7410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M et al (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med 5:198ra08

    Article  CAS  Google Scholar 

  119. Gashaw I, Ellinghaus P, Sommer A, Asadullah K (2012) What makes a good drug target? Drug Discov Today 17(Suppl):S24–S30

    Article  CAS  PubMed  Google Scholar 

  120. Yin Y, Choi SC, Xu Z, Perry DJ, Seay H, Croker BP et al (2015) Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med 7:274ra18

    Article  CAS  PubMed  Google Scholar 

  121. Son HJ, Lee J, Lee SY, Kim EK, Park MJ, Kim KW et al (2014) Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm 2014:973986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Kollias G, Papadaki P, Apparailly F, Vervoordeldonk MJ, Holmdahl R, Baumans V et al (2011) Animal models for arthritis: innovative tools for prevention and treatment. Ann Rheum Dis 70:1357–1362

    Article  PubMed  Google Scholar 

  123. Yang Z, Fujii H, Mohan SV, Goronzy JJ, Weyand CM (2013) Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med 210:2119–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang Z, Shen Y, Oishi H, Matteson EL, Tian L, Goronzy JJ et al (2016) Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med 8:331ra38

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gerlag DM, Raza K, van Baarsen LG, Brouwer E, Buckley CD, Burmester GR et al (2012) EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann Rheum Dis 71:638–641

    Article  PubMed  PubMed Central  Google Scholar 

  126. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882

    Article  CAS  PubMed  Google Scholar 

  127. Miossec P (2015) Drug treatments for rheumatoid arthritis: looking backwards to move forwards. BMJ 350:h1192

    Article  PubMed  Google Scholar 

  128. Scott DL, Ibrahim F, Farewell V, O’Keeffe AG, Walker D, Kelly C et al (2015) Tumour necrosis factor inhibitors versus combination intensive therapy with conventional disease modifying anti-rheumatic drugs in established rheumatoid arthritis: TACIT non-inferiority randomised controlled trial. BMJ 350:h1046

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ferrari M, Onuoha SC, Pitzalis C (2015) Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat Rev Rheumatol 11:328–337

    Article  CAS  PubMed  Google Scholar 

  130. Wilder RL (2002) Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis 61(Suppl 2):ii96–ii99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB et al (2013) Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7:50–57

    Article  CAS  PubMed  Google Scholar 

  132. Scheinman RI, Trivedi R, Vermillion S, Kompella UB (2011) Functionalized STAT1 siRNA nanoparticles regress rheumatoid arthritis in a mouse model. Nanomedicine (Lond) 6:1669–1682

    Article  CAS  Google Scholar 

  133. Firer MA, Gellerman G (2012) Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 5:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Byrne H, Conroy PJ, Whisstock JC, O’Kennedy RJ (2013) A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol 31:621–632

    Article  CAS  PubMed  Google Scholar 

  135. Expert Group on Phase I clinical trials (Chairman: Professor Gordon W. Duff) (2006)

    Google Scholar 

  136. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12:786–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Misharin AV, Haines GK 3rd, Rose S, Gierut AK, Hotchkiss RS, Perlman H (2012) Development of a new humanized mouse model to study acute inflammatory arthritis. J Transl Med 10:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Mauricio Rosas-Ballina was funded by the Human Frontier Science Program and the Junior Research Funds of the University of Basel while writing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Rosas-Ballina .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

None to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosas-Ballina, M. (2017). Energy Homeostasis of Immune Cells: Translating Cell Bioenergetics into Clinical Application in Rheumatoid Arthritis. In: Mina-Osorio, P. (eds) Next-Generation Therapies and Technologies for Immune-Mediated Inflammatory Diseases. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-42252-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42252-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42251-0

  • Online ISBN: 978-3-319-42252-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics