Skip to main content

In Vivo Preclinical Imaging of Developmental Biology

  • Chapter
  • First Online:
Small Animal Imaging

Abstract

Embryonic development, the generation of a living organism from a fertilized egg, poses some of the most intriguing challenges of biological research. Aberrations in development can arise from genetic alterations in the fetus, which can vary in the degree of penetration, and can also result from direct and indirect pathological processes affecting the fetus or the mother. Impaired fetal development is a major cause of premature morbidity and mortality. Dynamic imaging of the live fetus provides an important tool for elucidating the normal and pathological developmental changes occurring during pregnancy. In particular, as part of efforts for functional mapping of the genome using genetically modified animals, detailed analysis of fetal development in laboratory animals is central in elucidating the function of genes and the impact of alteration in gene expression. Moreover, imaging biomarkers developed in the context of basic biological research could provide the foundations for future prenatal clinical imaging. In this chapter, we will review recent developments in the use of noninvasive imaging for longitudinal monitoring of live embryos in small laboratory animals, with particular focus on in utero imaging of fetal development in the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aimot-Macron S, Salomon LJ, Deloison B, Thiam R, Cuenod CA, Clement O, et al. In vivo MRI assessment of placental and foetal oxygenation changes in a rat model of growth restriction using blood oxygen level-dependent (BOLD) magnetic resonance imaging. Eur Radiol. 2013;23(5):1335–42. doi:10.1007/s00330-012-2712-y.

    Article  CAS  PubMed  Google Scholar 

  • Alison M, Quibel T, Balvay D, Autret G, Bourillon C, Chalouhi GE, et al. Measurement of placental perfusion by dynamic contrast-enhanced MRI at 4.7 T. Invest Radiol. 2013;48(7):535–42. doi:10.1097/RLI.0b013e3182856a25.

    Article  PubMed  Google Scholar 

  • Akselrod-Ballin A, Dafni H, Addadi Y, Biton I, Avni R, Brenner Y, Neeman M. Multimodal correlative preclinical whole body imaging and segmentation. Sci Rep. 2016;6:27940. doi:10.1038/srep27940.

  • Aristizabal O, Mamou J, Ketterling JA, Turnbull DH. High-throughput, high-frequency 3-D ultrasound for in utero analysis of embryonic mouse brain development. Ultrasound Med Biol. 2013;39(12):2321–32. doi:10.1016/j.ultrasmedbio.2013.06.015.

    Article  PubMed  Google Scholar 

  • Avni R, Raz T, Biton IE, Kalchenko V, Garbow JR, Neeman M. Unique in utero identification of fetuses in multifetal mouse pregnancies by placental bidirectional arterial spin labeling MRI. Magn Reson Med. 2012;68(2):560–70. doi:10.1002/mrm.23246.

    Article  PubMed  Google Scholar 

  • Bang DW, Lee JH, Oh H, Kim SR, Kim TH, Lee YS, et al. Dose-incidence relationships on the prenatal effects of gamma-radiation in mice. J Veter Sci (Suwon-si Korea). 2002;3(1):7–11.

    Google Scholar 

  • Brown AS, Reid AD, Leamen L, Cucevic V, Foster FS. Biological effects of high-frequency ultrasound exposure during mouse organogenesis. Ultrasound Med Biol. 2004;30(9):1223–32.

    Article  PubMed  Google Scholar 

  • Chalouhi GE, Deloison B, Siauve N, Aimot S, Balvay D, Cuenod CA, et al. Dynamic contrast-enhanced magnetic resonance imaging: definitive imaging of placental function? Semin Fetal Neonatal Med. 2011;16(1):22–8. doi:10.1016/j.siny.2010.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Cleary JO, Modat M, Norris FC, Price AN, Jayakody SA, Martinez-Barbera JP, et al. Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping. Neuroimage. 2011;54(2):769–78. doi:10.1016/j.neuroimage.2010.07.039.

    Article  PubMed  Google Scholar 

  • Cohen B, Ziv K, Plaks V, Israely T, Kalchenko V, Harmelin A, et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med. 2007;13(4):498–503.

    Article  CAS  PubMed  Google Scholar 

  • Danneman PJ, Mandrell TD. Evaluation of five agents/methods for anesthesia of neonatal rats. Lab Anim Sci. 1997;47(4):386–95.

    CAS  PubMed  Google Scholar 

  • Deans AE, Wadghiri YZ, Berrios-Otero CA, Turnbull DH. Mn enhancement and respiratory gating for in utero MRI of the embryonic mouse central nervous system. Magn Reson Med. 2008;59(6):1320–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Degenhardt K, Singh MK, Aghajanian H, Massera D, Wang Q, Li J, et al. Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nat Med. 2013;19(6):760–5. doi:10.1038/nm.3185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degenhardt K, Wright AC, Horng D, Padmanabhan A, Epstein JA. Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining. Circ Cardiovasc Imaging. 2010;3(3):314–22. doi:10.1161/CIRCIMAGING.109.918482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickinson ME. Multimodal imaging of mouse development: tools for the postgenomic era. Dev Dyn. 2006;235(9):2386–400.

    Article  PubMed  Google Scholar 

  • Efimov IR, Nikolski VP, Salama G. Optical imaging of the heart. Circ Res. 2004;95(1):21–33. doi:10.1161/01.RES.0000130529.18016.3595/1/21[pii].

    Article  CAS  PubMed  Google Scholar 

  • Ezin M, Fraser S. Time-lapse imaging of the early avian embryo. Methods Cell Biol. 2008;87:211–36.

    Article  CAS  PubMed  Google Scholar 

  • Foster FS, Zhang M, Duckett AS, Cucevic V, Pavlin CJ. In vivo imaging of embryonic development in the mouse eye by ultrasound biomicroscopy. Invest Ophthalmol Vis Sci. 2003;44(6):2361–6.

    Article  PubMed  Google Scholar 

  • Gerneke DA, Sands GB, Ganesalingam R, Joshi P, Caldwell BJ, Smaill BH, et al. Surface imaging microscopy using an ultramiller for large volume 3D reconstruction of wax- and resin-embedded tissues. Microsc Res Tech. 2007;70(10):886–94. doi:10.1002/jemt.20491.

    Article  PubMed  Google Scholar 

  • Girsh E, Plaks V, Gilad AA, Nevo N, Schechtman E, Neeman M, et al. Cloprostenol, a prostaglandin F(2alpha) analog, induces hypoxia in rat placenta: BOLD contrast MRI. NMR Biomed. 2007;20(1):28–39.

    Article  CAS  PubMed  Google Scholar 

  • Gleave JA, Wong MD, Dazai J, Altaf M, Henkelman RM, Lerch JP, et al. Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging. Physiol Genomics. 2012;44(15):778–85. doi:10.1152/physiolgenomics.00055.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guldberg RE, Lin AS, Coleman R, Robertson G, Duvall C. Microcomputed tomography imaging of skeletal development and growth. Birth Defects Res C Embryo Today. 2004;72(3):250–9. doi:10.1002/bdrc.20016.

    Article  CAS  PubMed  Google Scholar 

  • Hogers B, van der Weerd L, Olofsen H, van der Graaf LM, Deruiter MC, Groot AC, et al. Non-invasive tracking of avian development in vivo by MRI. NMR Biomed. 2009;22(4):365–73.

    Article  PubMed  Google Scholar 

  • Ingham PW. The power of the zebrafish for disease analysis. Hum Mol Genet. 2009;18(R1):R107–12. doi:10.1093/hmg/ddp091. ddp091 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Kulandavelu S, Qu D, Sunn N, Mu J, Rennie MY, Whiteley KJ, et al. Embryonic and neonatal phenotyping of genetically engineered mice. ILAR J Nat Res Council Inst Lab Animal Resour. 2006;47(2):103–17.

    Article  CAS  Google Scholar 

  • Kulesa PM. Developmental imaging: insights into the avian embryo. Birth Defects Res C Embryo Today. 2004;72(3):260–6.

    Article  CAS  PubMed  Google Scholar 

  • Larina IV, Shen W, Kelly OG, Hadjantonakis AK, Baron MH, Dickinson ME. A membrane associated mCherry fluorescent reporter line for studying vascular remodeling and cardiac function during murine embryonic development. Anat Rec (Hoboken). 2009;292(3):333–41.

    Article  Google Scholar 

  • Le Floc’h J, Cherin E, Zhang MY, Akirav C, Adamson SL, Vray D, et al. Developmental changes in integrated ultrasound backscatter from embryonic blood in vivo in mice at high US frequency. Ultrasound Med Biol. 2004;30(10):1307–19. doi:10.1016/j.ultrasmedbio.2004.07.018. S0301-5629(04)00195-4 [pii].

    Article  PubMed  Google Scholar 

  • Lee SC, Mietchen D, Cho JH, Kim YS, Kim C, Hong KS, et al. In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards. Diff Res Bio Divers. 2007;75(1):84–92. doi:10.1111/j.1432-0436.2006.00114.x.

    CAS  Google Scholar 

  • Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol. 2000;18(3):321–5. doi:10.1038/73780.

    Article  CAS  PubMed  Google Scholar 

  • Lukasik VM, Gillies RJ. Animal anaesthesia for in vivo magnetic resonance. NMR Biomed. 2003;16(8):459–67. doi:10.1002/nbm.836.

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Zhang J, Bulte JW. Magnetic resonance microscopy of mouse brain development. Methods Mol Med. 2006;124:129–47.

    PubMed  Google Scholar 

  • Nguyen Huu S, Oster M, Uzan S, Chareyre F, Aractingi S, Khosrotehrani K. Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells. Proc Natl Acad Sci U S A. 2007;104(6):1871–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieman BJ, Szulc KU, Turnbull DH. Three-dimensional, in vivo MRI with self-gating and image coregistration in the mouse. Magn Reson Med. 2009;61(5):1148–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Norris FC, Modat M, Cleary JO, Price AN, McCue K, Scambler PJ, et al. Segmentation propagation using a 3D embryo atlas for high-throughput MRI phenotyping: comparison and validation with manual segmentation. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2013;69(3):877–83. doi:10.1002/mrm.24306.

    Article  Google Scholar 

  • Oest ME, Jones JC, Hatfield C, Prater MR. Micro-CT evaluation of murine fetal skeletal development yields greater morphometric precision over traditional clear-staining methods. Birth Defects Res. 2008;83(6):582–9.

    Article  CAS  Google Scholar 

  • Passamaneck YJ, Di Gregorio A, Papaioannou VE, Hadjantonakis AK. Live imaging of fluorescent proteins in chordate embryos: from ascidians to mice. Microsc Res Tech. 2006;69(3):160–7.

    Article  PubMed  Google Scholar 

  • Petiet AE, Kaufman MH, Goddeeris MM, Brandenburg J, Elmore SA, Johnson GA. High-resolution magnetic resonance histology of the embryonic and neonatal mouse: a 4D atlas and morphologic database. Proc Natl Acad Sci U S A. 2008;105(34):12331–6. doi:10.1073/pnas.0805747105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phoon CK. Imaging tools for the developmental biologist: ultrasound biomicroscopy of mouse embryonic development. Pediatr Res. 2006;60(1):14–21.

    Article  PubMed  Google Scholar 

  • Phoon CK, Ji RP, Aristizabal O, Worrad DM, Zhou B, Baldwin HS, et al. Embryonic heart failure in NFATc1-/- mice: novel mechanistic insights from in utero ultrasound biomicroscopy. Circ Res. 2004;95(1):92–9. doi:10.1161/01.RES.0000133681.99617.28.

    Article  CAS  PubMed  Google Scholar 

  • Plaks V, Berkovitz E, Vandoorne K, Berkutzki T, Damari GM, Haffner R, et al. Survival and size are differentially regulated by placental and fetal PKBalpha/AKT1 in mice. Biol Reprod. 2011a;84(3):537–45. doi:10.1095/biolreprod.110.085951.

    Article  CAS  PubMed  Google Scholar 

  • Plaks V, Birnberg T, Berkutzki T, Sela S, BenYashar A, Kalchenko V, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest. 2008;118(12):3954–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plaks V, Gershon E, Zeisel A, Jacob-Hirsch J, Neeman M, Winterhager E, et al. Blastocyst implantation failure relates to impaired translational machinery gene expression. Reproduction. 2014;148(1):87–98. doi:10.1530/rep-13-0395.

    Article  CAS  PubMed  Google Scholar 

  • Plaks V, Kalchenko V, Dekel N, Neeman M. MRI analysis of angiogenesis during mouse embryo implantation. Magn Reson Med. 2006;55(5):1013–22.

    Article  PubMed  Google Scholar 

  • Plaks V, Sapoznik S, Berkovitz E, Haffner-Krausz R, Dekel N, Harmelin A, et al. Functional phenotyping of the maternal albumin turnover in the mouse placenta by dynamic contrast-enhanced MRI. Mol Imaging Biol. 2011b;13(3):481–92. doi:10.1007/s11307-010-0390-1.

    Article  PubMed  Google Scholar 

  • Raz T, Avni R, Addadi Y, Cohen Y, Jaffa AJ, Hemmings B, et al. The hemodynamic basis for positional- and inter-fetal dependent effects in dual arterial supply of mouse pregnancies. PloS One. 2012;7(12):e52273. doi:10.1371/journal.pone.0052273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinon A, Lazar S, Marshall H, Buchmann-Moller S, Neufeld A, Elhanany-Tamir H, et al. Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development. 2007;134(17):3065–75. doi:10.1242/dev.002501. dev.002501 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg F, Efimov IR, Watanabe M. Functional imaging of the embryonic pacemaking and cardiac conduction system over the past 150 years: technologies to overcome the challenges. Anat Rec A Discov Mol Cell Evol Biol. 2004;280(2):980–9. doi:10.1002/ar.a.20076.

    Article  PubMed  Google Scholar 

  • Salomon LJ, Siauve N, Balvay D, Cuenod CA, Vayssettes C, Luciani A, et al. Placental perfusion MR imaging with contrast agents in a mouse model. Radiology. 2005;235(1):73–80.

    Article  PubMed  Google Scholar 

  • Salomon LJ, Siauve N, Taillieu F, Balvay D, Vayssettes C, Frija G, et al. In vivo dynamic MRI measurement of the noradrenaline-induced reduction in placental blood flow in mice. Placenta. 2006;27(9–10):1007–13.

    Article  CAS  PubMed  Google Scholar 

  • Schneider JE, Bhattacharya S. Making the mouse embryo transparent: identifying developmental malformations using magnetic resonance imaging. Birth Defects Res C Embryo Today. 2004;72(3):241–9.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP. MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A. 2004;101(30):10901–6. doi:10.1073/pnas.04039181010403918101[pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon E, Avni R, Hadas R, Raz T, Garbow JR, Bendel P, et al. Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI, and fluorescence imaging. Proc Natl Acad Sci U S A. 2014;111(28):10353–8. doi:10.1073/pnas.1401695111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taillieu F, Salomon LJ, Siauve N, Clement O, Faye N, Balvay D, et al. Placental perfusion and permeability: simultaneous assessment with dual-echo contrast-enhanced MR imaging in mice. Radiology. 2006;241(3):737–45.

    Article  PubMed  Google Scholar 

  • Tanaka M, Hadjantonakis AK, Vintersten K, Nagy A. Aggregation chimeras: combining ES cells, diploid, and tetraploid embryos. Methods Mol Biol. 2009;530:287–309. doi:10.1007/978-1-59745-471-1_15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirosh-Finkel L, Elhanany H, Rinon A, Tzahor E. Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development. 2006;133(10):1943–53. doi:10.1242/dev.02365. dev.02365 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson TM, Garbow JR, Anderson JR, Engelbach JA, Nelson DM, Sadovsky Y. Magnetic resonance imaging of hypoxic injury to the murine placenta. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R312–9. doi:10.1152/ajpregu.00425.2009.

    Article  CAS  PubMed  Google Scholar 

  • Turnbull DH, Mori S. MRI in mouse developmental biology. NMR Biomed. 2007;20(3):265–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandoorne K, Magland J, Plaks V, Sharir A, Zelzer E, Wehrli F, et al. Bone vascularization and trabecular bone formation are mediated by PKBalpha/Akt1 in a gene-dosage-dependent manner: in vivo and ex vivo MRI. Magn Reson Med. 2010;64(1):54–64. doi:10.1002/mrm.22395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandoorne K, Vandsburger MH, Weisinger K, Brumfeld V, Hemmings BA, Harmelin A, et al. Multimodal imaging reveals a role for Akt1 in fetal cardiac development. Physiol Rep. 2013;1(6):e00143. doi:10.1002/phy2.143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt A, Cholewinski A, Shen X, Nelson SG, Lazo JS, Tsang M, et al. Automated image-based phenotypic analysis in zebrafish embryos. Dev Dyn. 2009;238(3):656–63. doi:10.1002/dvdy.21892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weninger WJ, Geyer SH, Mohun TJ, Rasskin-Gutman D, Matsui T, Ribeiro I, et al. High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology. Anat Embryol. 2006;211(3):213–21. doi:10.1007/s00429-005-0073-x.

    Article  PubMed  Google Scholar 

  • Wiesmann F, Ruff J, Hiller KH, Rommel E, Haase A, Neubauer S. Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am J Physiol Heart Circ Physiol. 2000;278(2):H652–7.

    CAS  PubMed  Google Scholar 

  • Winkelmann CT, Wise LD. High-throughput micro-computed tomography imaging as a method to evaluate rat and rabbit fetal skeletal abnormalities for developmental toxicity studies. J Pharmacol Toxicol Methods. 2009;59(3):156–65. doi:10.1016/j.vascn.2009.03.004. S1056-8719(09)00230-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Delproposto Z, Zhou Z, Shen H, Xuan SY, Li QH, et al. In ovo monitoring of smooth muscle fiber development in the chick embryo: diffusion tensor imaging with histologic correlation. PLoS One. 2012;7(3):e34009. doi:10.1371/journal.pone.0034009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. Live imaging of lymphatic development in the zebrafish. Nat Med. 2006;12(6):711–6. doi:10.1038/nm1427. nm1427 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Richards LJ, Yarowsky P, Huang H, van Zijl PC, Mori S. Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage. 2003;20(3):1639–48. S1053811903004105 [pii].

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Israel Science Foundation ISF 93/07 and ISF Converging Technologies Equipment Award, the European Commission Seventh Framework ERC Advanced Project IMAGO 232,640, the US-Israel Binational Science Foundation and the National Institutes of Health (grant 1R01HD086323-01). MN is incumbent of the Helen and Morris Mauerberger Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Neeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vandoorne, K., Raz, T., Sapoznik, S., Biton, I.E., Garbow, J.R., Neeman, M. (2017). In Vivo Preclinical Imaging of Developmental Biology. In: Kiessling, F., Pichler, B., Hauff, P. (eds) Small Animal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42202-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42202-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42200-8

  • Online ISBN: 978-3-319-42202-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics