Skip to main content

Advertisement

Log in

In vivo MRI assessment of placental and foetal oxygenation changes in a rat model of growth restriction using blood oxygen level-dependent (BOLD) magnetic resonance imaging

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate whether changes in BOLD signal intensities following hyperoxygenation are related to intrauterine growth restriction (IUGR) in a rat model.

Methods

IUGR was induced in pregnant rats by ligating the left vascular uterine pedicle at day 16 of gestation. BOLD MR imaging using a balanced steady-state free-precession (balanced-SSFP) sequence on a 1.5-T system was performed on day 19. Signal intensities (SI) before and after maternal hyperoxygenation were compared in the maternal liver and in control and growth-restricted foetoplacental units (FPUs).

Results

Maternal hyperoxygenation resulted in a significant increase in SI in all regions of interest (P < 0.05) in the 18 rats. In the control group, the SI (mean ± SD) increased by 21 % ± 15 in placentas (n = 74) and 13 % ± 8.5 in foetuses (n = 53). In the IUGR group, the increase was significantly lower: 6.5 % ± 4 in placentas (n = 36) and 7 % ± 5.5 in foetuses (n = 34) (P < 0.05).

Conclusion

BOLD MRI allows non-invasive assessment of the foetoplacental response to maternal hyperoxygenation in the rat and demonstrates its alteration in an IUGR model. This imaging method may provide a useful adjunct for the early diagnosis, evaluation, and management of human IUGR.

Key Points

Intra-uterine growth restriction is an important cause of perinatal morbidity and mortality.

Blood oxygen level-dependent MRI non-invasively assesses foetoplacental response to maternal hyperoxygenation.

In the rat, foetoplacental response to maternal hyperoxygenation is altered in IUGR.

Functional MRI may help to assess human IUGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IUGR:

Intra-uterine growth restriction

FPU:

Foetoplacental unit

BOLD:

Blood oxygen level dependent

SI:

Signal intensity

References

  1. Malassine A (2001) Morphological variability and placental function. Gynecol Obstet Fertil 29:489–496

    Article  PubMed  CAS  Google Scholar 

  2. Sibai BM, Lindheimer M, Hauth J et al (1998) Risk factors for preeclampsia, abruptio placentae, and adverse neonatal outcomes among women with chronic hypertension. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med 339:667–671

    Article  PubMed  CAS  Google Scholar 

  3. Tsatsaris V, Fournier T, Winer N (2008) Pathophysiology of preeclampsia. J Gynecol Obstet Biol Reprod (Paris) 37:16–23

    Article  CAS  Google Scholar 

  4. Salomon LJ, Siauve N, Balvay D, Cuenod CA, Vayssettes C, Luciani A et al (2005) Placental perfusion MR imaging with contrast agents in a mouse model. Radiology 235:73–80

    Article  PubMed  Google Scholar 

  5. Salomon LJ, Siauve N, Taillieu F et al (2006) In vivo dynamic MRI measurement of the noradrenaline-induced reduction in placental blood flow in mice. Placenta 27:1007–1013

    Article  PubMed  CAS  Google Scholar 

  6. Taillieu F, Salomon LJ, Siauve N et al (2006) Placental perfusion and permeability: simultaneous assessment with dual-echo contrast-enhanced MR imaging in mice. Radiology 241:737–745

    Article  PubMed  Google Scholar 

  7. Gore JC (2003) Principles and practice of functional MRI of the human brain. J Clin Invest 112:4–9

    PubMed  CAS  Google Scholar 

  8. Le Bihan D, Lehericy S (1999) Practical aspects of realization of a functional MRI. J Neuroradiol 26:S54–S58

    PubMed  Google Scholar 

  9. Rhee TK, Larson AC, Prasad PV et al (2005) Feasibility of blood oxygenation level-dependent MR imaging to monitor hepatic transcatheter arterial embolization in rabbits. J Vasc Interv Radiol 16:1523–1528

    Article  PubMed  Google Scholar 

  10. Ledermann HP, Heidecker HG, Schulte AC et al (2006) Calf muscles imaged at BOLD MR: correlation with TcPO2 and flowmetry measurements during ischemia and reactive hyperemia–initial experience. Radiology 241:477–484

    Article  PubMed  Google Scholar 

  11. Landuyt W, Hermans R, Bosmans H et al (2001) BOLD contrast fMRI of whole rodent tumour during air or carbogen breathing using echo-planar imaging at 1.5 T. Eur Radiol 11:2332–2340

    Article  PubMed  CAS  Google Scholar 

  12. Vincent K, Moore J, Kennedy S, Tracey I (2008) Blood oxygenation level dependent functional magnetic resonance imaging: current and potential uses in obstetrics and gynaecology. BJOG 116:240–246

    Article  Google Scholar 

  13. Rodesch F, Simon P, Donner C, Jauniaux E (1992) Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol 80:283–285

    PubMed  CAS  Google Scholar 

  14. Jauniaux E, Gulbis B, Burton GJ (2003) Physiological implications of the materno-fetal oxygen gradient in human early pregnancy. Reprod Biomed Online 7:250–253

    Article  PubMed  Google Scholar 

  15. Longo LD (1988) Transplacental gas exchange. Rev Mal Respir 5:197–206

    PubMed  CAS  Google Scholar 

  16. Nicolaides KH, Economides DL, Soothill PW (1989) Blood gases, pH, and lactate in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol 161:996–1001

    PubMed  CAS  Google Scholar 

  17. Soothill PW, Nicolaides KH, Bilardo CM, Campbell S (1986) Relation of fetal hypoxia in growth retardation to mean blood velocity in the fetal aorta. Lancet 2:1118–1120

    Article  PubMed  CAS  Google Scholar 

  18. Wilson RD, Farquharson DF, Wittmann BK, Shaw D (1994) Cordocentesis: overall pregnancy loss rate as important as procedure loss rate. Fetal Diagn Ther 9:142–148, Review

    Article  PubMed  CAS  Google Scholar 

  19. Delmaire C, Krainik A, Lethuc V et al (2007) Functional magnetic resonance imaging: physiopathology, techniques and applications. J Radiol 88:497–509

    Article  PubMed  CAS  Google Scholar 

  20. Habas C (2002) Physiological basis of functional MRI. J Radiol 83:1737–1741

    PubMed  CAS  Google Scholar 

  21. Girsh E, Plaks V, Gilad AA et al (2007) Cloprostenol, a prostaglandin F(2alpha) analog, induces hypoxia in rat placenta: BOLD contrast MRI. NMR Biomed 20:28–39

    Article  PubMed  CAS  Google Scholar 

  22. Wedegartner U, Kooijman H, Andreas T, Beindorff N, Hecher K, Adam G (2010) T2 and T2* measurements of fetal brain oxygenation during hypoxia with MRI at 3 T: correlation with fetal arterial blood oxygen saturation. Eur Radiol 20:121–127

    Article  PubMed  Google Scholar 

  23. Wedgartner U, Tchirikov M, Schäfer S, Priest AN, Kooijman H, Adam G, Schröder HJ (2006) Functional MR imaging: comparison of BOLD signal intensity changes in fetal organs with fetal and maternal oxyhemoglobin saturation during hypoxia in sheep. Radiology 238:872–880

    Article  Google Scholar 

  24. Sørensen A, Pedersen M, Tietze A, Ottosen L, Duus L, Uldbjerg N (2009) BOLD MRI in sheep fetuses: a non-invasive method for measuring changes in tissue oxygenation. Ultrasound Obstet Gynecol 34:687–692

    Article  PubMed  Google Scholar 

  25. Semple SI, Wallis F, Haggarty P et al (2001) The measurement of fetal liver T(*)(2) in utero before and after maternal oxygen breathing: progress towards a non-invasive measurement of fetal oxygenation and placental function. Magn Reson Imaging 19:921–928

    Article  PubMed  CAS  Google Scholar 

  26. Morris DM, Ross JAS, McVicar A et al (2010) Changes in fetal liver T2* measurements by MRI in response to maternal oxygen breathing: application to diagnosing fœtal growth restriction. Physiol Meas 31:1137–1146

    Article  PubMed  Google Scholar 

  27. Barker DJ (1996) Growth in utero and coronary heart disease. Nutr Rev 54:S1–S7

    Article  PubMed  CAS  Google Scholar 

  28. Salle BL, Chatelain P, Nicolino M, Claris O (2001) Intrauterine growth retardation, its consequences in infancy, in the child and long term. Bull Acad Natl Med 185:1271–1276

    PubMed  CAS  Google Scholar 

  29. Wigglesworth JS (1964) Experimental growth retardation in the fetal rat. J Pathol Bacteriol 88:1–13

    Article  PubMed  CAS  Google Scholar 

  30. Wigglesworth JS (1967) Pathological and experimental aspects of fetal growth retardation. Proc R Soc Med 60:879–881

    PubMed  CAS  Google Scholar 

  31. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain Magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  32. Li D, Waight DJ, Wang Y (1998) In vivo correlation between blood T2* and oxygen saturation. J Magn Reson Imaging 8:1236–1239

    Article  PubMed  CAS  Google Scholar 

  33. Li D, Wang Y, Waight DJ (1998) Blood oxygen saturation assessment in vivo using T2* estimation. Magn Reson Med 39:685–690

    Article  PubMed  CAS  Google Scholar 

  34. Scheffler K, Seifritz E, Bilecen D et al (2001) Detection of BOLD changes by means of a frequency-sensitive trueFISP technique: preliminary results. NMR Biomed 14:490–496

    Article  PubMed  CAS  Google Scholar 

  35. Miller KL, Smith SM, Jezzard P, Pauly JM (2006) High-resolution FMRI at 1.5 T using balanced SSFP. Magn Reson Med 55:161–170

    Article  PubMed  CAS  Google Scholar 

  36. Miller KL, Hargreaves BA, Lee J, Ress D, deCharms RC, Pauly JM (2003) Functional brain imaging using a blood oxygenation sensitive steady state. Magn Reson Med 50:675–683

    Article  PubMed  Google Scholar 

  37. Wright KB, Klocke FJ, Deshpande VS et al (2001) Assessment of regional differences in myocardial blood flow using T2-weighted 3D BOLD imaging. Magn Reson Med 46:573–578

    Article  PubMed  CAS  Google Scholar 

  38. Dharmakumar R, Hong J, Brittain JH, Plewes DB, Wright GA (2005) Oxygen sensitive contrast in blood for steady state free precession imaging. Magn Reson Med 53:574–583

    Article  PubMed  Google Scholar 

  39. Dharmakumar R, Qi X, Hong J, Wright GA (2006) Detecting microcirculatory changes in blood oxygen state with steady-state free precession imaging. Magn Reson Med 55:1372–1380

    Article  PubMed  Google Scholar 

  40. Vöhringer M, Flewitt JA, Green JD et al (2010) Oxygenation-sensitive CMR for assessing vasodilatator-induced changes of myocardial oxygenation. J Cardiovasc Magn Reson 31:12–20

    Google Scholar 

  41. Battaglia C, Artini PG, D’Ambrogio G, Galli PA, Segre A, Genazzani AR (1992) Maternal hyperoxygenation in the treatment of intrauterine growth retardation. Am J Obstet Gynecol 167:430–435

    PubMed  CAS  Google Scholar 

  42. Say L, Gülmezoglu AM, Hofmeyr GJ (2003) Maternal oxygen administration for suspected impaired fetal growth. Cochrane Database Syst Rev: CD000137. doi:10.1002/14651858.CD000137

  43. Nicolaides KH, Campbell S, Bradley RJ, Bilardo CM, Soothill PW, Gibb D (1987) Maternal oxygen therapy for intrauterine growth retardation. Lancet 1:942–945

    Article  PubMed  CAS  Google Scholar 

  44. Figueroa R, Maulik D (2006) Prenatal therapy for fetal growth restriction. Clin Obstet Gynecol 49:308–319

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aimot-Macron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aimot-Macron, S., Salomon, L.J., Deloison, B. et al. In vivo MRI assessment of placental and foetal oxygenation changes in a rat model of growth restriction using blood oxygen level-dependent (BOLD) magnetic resonance imaging. Eur Radiol 23, 1335–1342 (2013). https://doi.org/10.1007/s00330-012-2712-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2712-y

Keywords

Navigation