Skip to main content

MicroRNAs and Inflammation in Colorectal Cancer

  • Chapter
  • First Online:
Non-coding RNAs in Colorectal Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 937))

Abstract

Colorectal cancers (CRC) are known to be related to inflammatory conditions, and inflammatory bowel diseases increase the relative risk for developing CRC. The use of anti-inflammatory drugs prevents the development of colorectal cancer.

Several molecular mediators are connecting the pathways that are involved in inflammatory conditions and in carcinogenesis. By the way these pathways are tightly interwoven, with the consequence that a deregulation at the level of any of these molecular mediators can affect the others.

MiRNAs are demonstrated to be deregulated in inflammatory bowel diseases and in colorectal cancer. Moreover, they target several molecular mediators that connect inflammation to cancer, and they are thus implicated in the route from inflammation to colorectal cancer.

This chapter will focus on the miRNAs that are jointly deregulated in inflammatory bowel disease and in colorectal cancer. Their role on the regulation of the molecular mediators and pathways that link inflammation to cancer will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi:10.1101/gr.082701.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sonkoly E, Pivarcsi A. microRNAs in inflammation. Int Rev Immunol. 2009;28:535–61. doi:10.3109/08830180903208303.

    Article  CAS  PubMed  Google Scholar 

  3. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;1–10. doi:10.1016/j.molmed.2014.06.005.

    Google Scholar 

  4. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44. doi:10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  5. Cuzick J, Otto F, Baron JA, Brown PH, Burn J, Greenwald P, et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 2009;10:501–7. doi:10.1016/S1470-2045(09)70035-X.

    Article  CAS  PubMed  Google Scholar 

  6. Rigas B, Tsioulias GJ. The evolving role of nonsteroidal anti-inflammatory drugs in colon cancer prevention: a cause for optimism. J Pharmacol Exp Ther. 2015;353:2–8. doi:10.1124/jpet.114.220806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ek WE, D’Amato M, Halfvarson J. The history of genetics in inflammatory bowel disease. Ann Gastroenterol Q Publ Hell Soc Gastroenterol. 2014;27:294–303.

    Google Scholar 

  8. Herszényi L, Barabás L, Miheller P, Tulassay Z. Colorectal cancer in patients with inflammatory bowel disease: the true impact of the risk. Dig Dis. 2015;33:52–7. doi:10.1159/000368447.

    Article  PubMed  Google Scholar 

  9. Goel A. MicroRNAs as therapeutic targets in colitis and colitis-associated cancer: tiny players with a giant impact. Gastroenterology. 2015;149:859–61. doi:10.1053/j.gastro.2015.08.041.

    Article  PubMed  Google Scholar 

  10. Schetter AJ, Heegaard NHH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31:37–49. doi:10.1093/carcin/bgp272.

    Article  CAS  PubMed  Google Scholar 

  11. Francescone R, Hou V, Grivennikov SI. Cytokines, IBD, and colitis-associated cancer. Inflamm Bowel Dis. 2015;21:409–18. doi:10.1097/MIB.0000000000000236.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bregenzer N, Hartmann A, Strauch U, Schölmerich J, Andus T, Bollheimer LC. Increased insulin resistance and beta cell activity in patients with Crohn’s disease. Inflamm Bowel Dis. 2006;12:53–6.

    Article  PubMed  Google Scholar 

  13. Lawrance IC, Maxwell L, Doe W. Inflammation location, but not type, determines the increase in TGF-beta1 and IGF-1 expression and collagen deposition in IBD intestine. Inflamm Bowel Dis. 2001;7:16–26.

    Article  CAS  PubMed  Google Scholar 

  14. Shirakami Y, Shimizu M, Kubota M, Araki H, Tanaka T, Moriwaki H, et al. Chemoprevention of colorectal cancer by targeting obesity-related metabolic abnormalities. World J Gastroenterol. 2014;20:8939–46. doi:10.3748/wjg.v20.i27.8939.

    PubMed  PubMed Central  Google Scholar 

  15. Gallagher EJ, LeRoith D. The proliferating role of insulin and insulin-like growth factors in cancer. Trends Endocrinol Metab. 2010;21:610–8. doi:10.1016/j.tem.2010.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J, Croucher PJP, et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology. 2002;122:867–74.

    Article  CAS  PubMed  Google Scholar 

  17. Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta. 1855;2015:104–21. doi:10.1016/j.bbcan.2014.09.008.

    Google Scholar 

  18. Zhang J, Roberts TM, Shivdasani RA. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology. 2011;141:50–61. doi:10.1053/j.gastro.2011.05.010.

    Article  CAS  PubMed  Google Scholar 

  19. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol. 2011;12:715–23. doi:10.1038/ni.2060.

    Google Scholar 

  20. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81. doi:10.1093/carcin/bgp127.

    Article  CAS  PubMed  Google Scholar 

  21. Kukitsu T, Takayama T, Miyanishi K, Nobuoka A, Katsuki S, Sato Y, et al. Aberrant crypt foci as precursors of the dysplasia-carcinoma sequence in patients with ulcerative colitis. Clin Cancer Res. 2008;14:48–54. doi:10.1158/1078-0432.CCR-07-1835.

    Article  CAS  PubMed  Google Scholar 

  22. Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, et al. Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 2013;23:634–46. doi:10.1016/j.ccr.2013.03.022.

    Google Scholar 

  23. Levy N, Yonish-Rouach E, Oren M, Kimchi A. Complementation by wild-type p53 of interleukin-6 effects on M1 cells: induction of cell cycle exit and cooperativity with c-myc suppression. Mol Cell Biol. 1993;13:7942–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brighenti E, Calabrese C, Liguori G, Giannone FA, Trerè D, Montanaro L, et al. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer. Oncogene. 2014;33:4396–406. doi:10.1038/onc.2014.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Claessen MMH, Schipper MEI, Oldenburg B, Siersema PD, Offerhaus GJA, Vleggaar FP. WNT-pathway activation in IBD-associated colorectal carcinogenesis: potential biomarkers for colonic surveillance. Cell Oncol. 2010;32:303–10. doi:10.3233/CLO-2009-0503.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, et al. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: a basis for novel drugs targeting cancer cells? Pharmacol Ther. 2015. doi:10.1016/j.pharmthera.2015.11.001.

    PubMed  Google Scholar 

  27. Tao S, Tang D, Morita Y, Sperka T, Omrani O, Lechel A, et al. Wnt activity and basal niche position sensitize intestinal stem and progenitor cells to DNA damage. EMBO J. 2015;34:624–40. doi:10.15252/embj.201490700.

    Google Scholar 

  28. Yu C-H, Nguyen TTK, Irvine KM, Sweet MJ, Frazer IH, Blumenthal A. Recombinant Wnt3a and Wnt5a elicit macrophage cytokine production and tolerization to microbial stimulation via Toll-like receptor 4. Eur J Immunol. 2014;44:1480–90. doi:10.1002/eji.201343959.

    Article  CAS  PubMed  Google Scholar 

  29. Meira LB, Bugni JM, Green SL, Lee C, Pang B, Borenshtein D, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest. 2008;118:2516–25. doi:10.1172/JCI35073.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalla R, Ventham NT, Kennedy NA, Quintana JF, Nimmo ER, Buck AH, et al. MicroRNAs: new players in IBD. Gut. 2015;64:504–13. doi:10.1136/gutjnl-2014-307891.

    Article  CAS  PubMed  Google Scholar 

  31. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L, et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies [Internet]. J Carcinog 2011. p. 9. doi:10.4103/1477-3163.78279.

    Google Scholar 

  32. Greten FR, Eckmann L, Greten TF, Park JM, Li Z-W, Egan LJ, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96. doi:10.1016/j.cell.2004.07.013.

    Article  CAS  PubMed  Google Scholar 

  33. Josse C, Bouznad N, Geurts P, Irrthum A, Huynh-Thu VA, Servais L, et al. Identification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis. Am J Physiol Gastrointest Liver Physiol. 2014;306:G229–43. doi:10.1152/ajpgi.00484.2012.

    Article  CAS  PubMed  Google Scholar 

  34. Liu S-Q, Jiang S, Li C, Zhang B, Li Q-J. miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. J Biol Chem. 2014;289:12446–56. doi:10.1074/jbc.M114.550723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanaan Z, Rai SN, Eichenberger MR, Barnes C, Dworkin AM, Weller C, et al. Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum Mutat. 2012;33:551–60. doi:10.1002/humu.22021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M. Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci U S A. 2013;110:11499–504. doi:10.1073/pnas.1219852110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olivo-Marston SE, Hursting SD, Perkins SN, Schetter A, Khan M, Croce C, et al. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLoS One. 2014;9:e94765. doi:10.1371/journal.pone.0094765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bian Z, Li L, Cui J, Zhang H, Liu Y, Zhang C-Y, et al. Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. J Pathol. 2011;225:544–53. doi:10.1002/path.2907.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39:133–44. doi:10.1016/j.molcel.2010.06.010.

    Article  CAS  PubMed  Google Scholar 

  40. Singh UP, Murphy AE, Enos RT, Shamran HA, Singh NP, Guan H, et al. miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses. Immunology. 2014;143:478–89. doi:10.1111/imm.12328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299:425–36. doi:10.1001/jama.299.4.425.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Iliopoulos D. Jaeger S a, Hirsch H a, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39:493–506. doi:10.1016/j.molcel.2010.07.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi C, Yang Y, Xia Y, Okugawa Y, Yang J, Liang Y, et al. Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer. Gut. 2015;1–12. doi:10.1136/gutjnl-2014-308455

    Google Scholar 

  44. Schaefer JS, Montufar-Solis D, Vigneswaran N, Klein JR. Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10−/− mice precedes expression in the colon. J Immunol. 2011;187:5834–41. doi:10.4049/jimmunol.1100922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hofsli E, Sjursen W, Prestvik WS, Johansen J, Rye M, Tranø G, et al. Identification of serum microRNA profiles in colon cancer. Br J Cancer. 2013;108:1712–9. doi:10.1038/bjc.2013.121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brain O, Owens BMJ, Pichulik T, Allan P, Khatamzas E, Leslie A, et al. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 2013;39:521–36. doi:10.1016/j.immuni.2013.08.035.

    Article  CAS  PubMed  Google Scholar 

  47. Wu L, Li H, Jia CY, Cheng W, Yu M, Peng M, et al. MicroRNA-223 regulates FOXO1 expression and cell proliferation. FEBS Lett. 2012;586:1038–43. doi:10.1016/j.febslet.2012.02.050.

    Article  CAS  PubMed  Google Scholar 

  48. Jia CY, Li HH, Zhu XC, Dong YW, Fu D, Zhao QL, et al. MiR-223 suppresses cell proliferation by targeting IGF-1R. PLoS One. 2011;6:e27008. doi:10.1371/journal.pone.0027008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nian W, Ao X, Wu Y, Huang Y, Shao J, Wang Y, et al. miR-223 functions as a potent tumor suppressor of the Lewis lung carcinoma cell line by targeting insulin-like growth factor-1 receptor and cyclin-dependent kinase 2. Oncol Lett. 2013;6:359–66. doi:10.3892/ol.2013.1375.

    PubMed  PubMed Central  Google Scholar 

  50. Pan Y, Liang H, Liu H, Li D, Chen X, Li L, et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol. 2014;192:437–46. doi:10.4049/jimmunol.1301790.

    Article  CAS  PubMed  Google Scholar 

  51. Chuang AY, Chuang JC, Zhai Z, Wu F, Kwon JH. NOD2 expression is regulated by microRNAs in colonic epithelial HCT116 cells. Inflamm Bowel Dis. 2014;20:126–35. doi:10.1097/01.MIB.0000436954.70596.9b.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481–6. doi:10.1073/pnas.0605298103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Noguchi S, Yasui Y, Iwasaki J, Kumazaki M, Yamada N, Naito S, et al. Replacement treatment with microRNA-143 and −145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett. 2013;328:353–61. doi:10.1016/j.canlet.2012.10.017.

    Article  CAS  PubMed  Google Scholar 

  54. Barbáchano A, Fernández-Barral A, Pereira F, Segura MF, Ordóñez-Morán P, Carrillo-de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2015. doi:10.1038/onc.2015.366.

    PubMed  Google Scholar 

  55. Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;5:29. doi:10.1186/1476-4598-5-29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28:1385–92. doi:10.1038/onc.2008.474.

    Article  CAS  PubMed  Google Scholar 

  57. Polytarchou C, Hommes DW, Palumbo T, Hatziapostolou M, Koutsioumpa M, Koukos G, et al. MicroRNA214 is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice. Gastroenterology. 2015;49:981–92.e11. doi:10.1053/j.gastro.2015.05.057.

    Article  CAS  Google Scholar 

  58. Polytarchou C, Iliopoulos D, Struhl K. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc Natl Acad Sci U S A. 2012;109:14470–5. doi:10.1073/pnas.1212811109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang Y, Tang Q, Li M, Jiang S, Wang X. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun. 2014;444:199–204. doi:10.1016/j.bbrc.2014.01.028.

    Article  CAS  PubMed  Google Scholar 

  60. Mao Q, Quan T, Luo B, Guo X, Liu L, Zheng Q. MiR-375 targets KLF4 and impacts the proliferation of colorectal carcinoma. Tumor Biol. 2015. doi:10.1007/s13277-015-3809-0.

    Google Scholar 

  61. Ghaleb AM, Laroui H, Merlin D, Yang VW. Genetic deletion of Klf4 in the mouse intestinal epithelium ameliorates dextran sodium sulfate-induced colitis by modulating the NF-κB pathway inflammatory response. Inflamm Bowel Dis. 2014;20:811–20. doi:10.1097/MIB.0000000000000022.

    Google Scholar 

  62. Lee H-Y, Ahn JB, Rha SY, Chung HC, Park KH, Kim TS, et al. High KLF4 level in normal tissue predicts poor survival in colorectal cancer patients. World J Surg Oncol. 2014;12:232. doi:10.1186/1477-7819-12-232.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tili E, Croce CM, Michaille J-J. miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol. 2009;28:264–84. doi:10.1080/08830180903093796.

    Article  CAS  PubMed  Google Scholar 

  64. Chae YS, Kim JG, Lee SJ, Kang BW, Lee YJ, Park JY, et al. A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. Anticancer Res. 2013;33:3233–9.

    CAS  PubMed  Google Scholar 

  65. Koukos G, Polytarchou C, Kaplan JL, Morley-Fletcher A, Gras-Miralles B, Kokkotou E, et al. MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology. 2013;145:842–52.e2. doi:10.1053/j.gastro.2013.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67:1424–9. doi:10.1158/0008-5472.CAN-06-4218.

    Article  CAS  PubMed  Google Scholar 

  67. Ueda Y, Ando T, Nanjo S, Ushijima T, Sugiyama T. DNA methylation of microRNA-124a is a potential risk marker of colitis-associated cancer in patients with ulcerative colitis. Dig Dis Sci. 2014;59:2444–51. doi:10.1007/s10620-014-3193-4.

    Article  CAS  PubMed  Google Scholar 

  68. Chen Q, Wang H, Liu Y, Song Y, Lai L, Han Q, et al. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1β production in macrophages by targeting STAT3. PLoS One. 2012;7:e42971. doi:10.1371/journal.pone.0042971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124:1853–67. doi:10.1172/JCI73531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mathé E, Nguyen GH, Funamizu N, He P, Moake M, Croce CM, et al. Inflammation regulates microRNA expression in cooperation with p53 and nitric oxide. Int J Cancer. 2012;131:760–5. doi:10.1002/ijc.26403.

    Article  PubMed  CAS  Google Scholar 

  71. Li W, Han W, Ma Y, Cui L, Tian Y, Zhou Z, et al. P53-dependent miRNAs mediate nitric oxide-induced apoptosis in colonic carcinogenesis. Free Radic Biol Med. 2015;85:105–13. doi:10.1016/j.freeradbiomed.2015.04.016.

    Article  CAS  PubMed  Google Scholar 

  72. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A. 2009;106:3207–12. doi:10.1073/pnas.0808042106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Masciarelli S, Fontemaggi G, Di Agostino S, Donzelli S, Carcarino E, Strano S, et al. Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene. 2014;33:1601–8. doi:10.1038/onc.2013.106.

    Article  CAS  PubMed  Google Scholar 

  74. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4. doi:10.1038/nature05939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang M, Zhang P, Li Y, Liu G, Zhou B, Zhan L, et al. The quantitative analysis by stem-loop real-time PCR revealed the microRNA-34a, microRNA-155 and microRNA-200c overexpression in human colorectal cancer. Med Oncol. 2012;29:3113–8. doi:10.1007/s12032-012-0241-9.

    Article  CAS  PubMed  Google Scholar 

  76. Hiyoshi Y, Schetter AJ, Okayama H, Inamura K, Anami K, Nguyen GH, et al. Increased microRNA-34b and -34c predominantly expressed in stromal tissues is associated with poor prognosis in human colon cancer. PLoS One. 2015;10:e0124899. doi:10.1371/journal.pone.0124899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Arndt GM, Dossey L, Cullen LM, Lai A, Druker R, Eisbacher M, et al. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer. 2009;9:374. doi:10.1186/1471-2407-9-374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Monzo M, Navarro A, Bandres E, Artells R, Moreno I, Gel B, et al. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res. 2008;18:823–33. doi:10.1038/cr.2008.81.

    Article  CAS  PubMed  Google Scholar 

  79. Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, et al. Role of anti-oncomirs miR-143 and −145 in human colorectal tumors. Cancer Gene Ther. 2010;17:398–408. doi:10.1038/cgt.2009.88.

    Article  CAS  PubMed  Google Scholar 

  80. Roy S, Levi E, Majumdar APN, Sarkar FH. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol. 2012;5:58. doi:10.1186/1756-8722-5-58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43. doi:10.1038/nature03677.

    Article  PubMed  CAS  Google Scholar 

  82. Pickering MT, Stadler BM, Kowalik TF. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene. 2008;28:140–5. doi:10.1038/onc.2008.372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Davidson-Moncada J, Papavasiliou FN, Tam W. MicroRNAs of the immune system: roles in inflammation and cancer. Ann N Y Acad Sci. 2010;1183:183–94. doi:10.1111/j.1749-6632.2009.05121.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S, et al. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res. 2011;9:960–75. doi:10.1158/1541-7786.MCR-10-0531.

    Article  CAS  PubMed  Google Scholar 

  85. Christensen LL, Holm A, Rantala J, Kallioniemi O, Rasmussen MH, Ostenfeld MS, et al. Functional screening identifies miRNAs influencing apoptosis and proliferation in colorectal cancer. PLoS One. 2014;9:e96767. doi:10.1371/journal.pone.0096767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature. 2015;526:715–8. doi:10.1038/nature15382.

    Article  CAS  PubMed  Google Scholar 

  87. Liang L, Zhu J, Zaorsky NG, Deng Y, Wu X, Liu Y, et al. MicroRNA-223 enhances radiation sensitivity of U87MG cells in vitro and in vivo by targeting ataxia telangiectasia mutated. Int J Radiat Oncol. 2014;88:955–60. doi:10.1016/j.ijrobp.2013.12.036.

    Article  CAS  Google Scholar 

  88. Tabet F, Vickers KC, Cuesta Torres LF, Wiese CB, Shoucri BM, Lambert G, et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun. 2014;5:3292. doi:10.1038/ncomms4292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013;121:984–95. doi:10.1182/blood-2011-08-374793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu Q, Zhang M, Jiang X, Zhang Z, Dai L, Min S, et al. miR-223 suppresses differentiation of tumor-induced CD11b+ Gr1+ myeloid-derived suppressor cells from bone marrow cells. Int J Cancer. 2011;129:2662–73. doi:10.1002/ijc.25921.

    Article  CAS  PubMed  Google Scholar 

  91. Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong W-C, et al. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol. 2011;9:e1001162. doi:10.1371/journal.pbio.1001162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Knudsen KN, Nielsen BS, Lindebjerg J, Hansen TF, Holst R, Sørensen FB. MicroRNA-17 is the most up-regulated member of the miR-17-92 cluster during early colon cancer evolution. PLoS One. 2015;10:e0140503. doi:10.1371/journal.pone.0140503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ng EKO, Tsang WP, Ng SSM, Jin HC, Yu J, Li JJ, et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer. 2009;101:699–706. doi:10.1038/sj.bjc.6605195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gaedcke J, Grade M, Camps J, Sokilde R, Kaczkowski B, Schetter AJ, et al. The rectal cancer microRNAome - microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res. 2012;18:4919–30. doi:10.1158/1078-0432.CCR-12-0016.

    Article  CAS  PubMed  Google Scholar 

  95. Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, et al. Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009;34:1069–75. doi:10.3892/ijo.

    CAS  PubMed  Google Scholar 

  96. Volinia S, Calin GA, Liu C, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61. doi:10.1073/pnas.0510565103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu M, Chen H. The role of microRNAs in colorectal cancer. J Genet Genomics. 2010;37:347–58. doi:10.1016/S1673-8527(09)60053-9.

    Article  CAS  PubMed  Google Scholar 

  98. Pekow JR, Dougherty U, Mustafi R, Zhu H, Kocherginsky M, Rubin DT, et al. miR-143 and miR-145 are downregulated in ulcerative colitis: putative regulators of inflammation and protooncogenes. Inflamm Bowel Dis. 2012;18:94–100. doi:10.1002/ibd.21742.

    Article  PubMed  Google Scholar 

  99. Faltejskova P, Svoboda M, Srutova K, Mlcochova J, Besse A, Nekvindova J, et al. Identification and functional screening of microRNAs highly deregulated in colorectal cancer. J Cell Mol Med. 2012;16:2655–66. doi:10.1111/j.1582-4934.2012.01579.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjøt L, et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 2008;68:6416–24. doi:10.1158/0008-5472.CAN-07-6110.

    Article  CAS  PubMed  Google Scholar 

  101. Fasseu M, Tréton X, Guichard C, Pedruzzi E, Cazals-Hatem D, Richard C, et al. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. Dalmasso G, editor. PLoS One. 2010;5:e13160. doi:10.1371/journal.pone.0013160.

    Google Scholar 

  102. Pizzini S, Bisognin A, Mandruzzato S, Biasiolo M, Facciolli A, Perilli L, et al. Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis. BMC Genomics. 2013;14:589. doi:10.1186/1471-2164-14-589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Takagi T, Naito Y, Mizushima K, Hirata I, Yagi N, Tomatsuri N, et al. Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis. J Gastroenterol Hepatol. 2010;25 Suppl 1:S129–33. doi:10.1111/j.1440-1746.2009.06216.x.

    Article  CAS  PubMed  Google Scholar 

  104. Qu Y-L, Wang H-F, Sun Z-Q, Tang Y, Han X-N, Yu X-B, et al. Up-regulated miR-155-5p promotes cell proliferation, invasion and metastasis in colorectal carcinoma. Int J Clin Exp Pathol. 2015;8:6988–94.

    PubMed  PubMed Central  Google Scholar 

  105. Li W, Han W, Zhao X, Wang H. Changes of expression of miR-155 in colitis-associated colonic carcinogenesis. Zhonghua Zhong Liu Za Zhi. 2014;36:257–62.

    CAS  PubMed  Google Scholar 

  106. Earle JSL, Luthra R, Romans A, Abraham R, Ensor J, Yao H, et al. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn. 2010;12:433–40. doi:10.2353/jmoldx.2010.090154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu F, Zikusoka M, Trindade A, Dassopoulos T, Harris ML, Bayless TM, et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. 2008;135:1624–35.e24. doi:10.1053/j.gastro.2008.07.068.

    Article  CAS  PubMed  Google Scholar 

  108. Wu F, Zhang S, Dassopoulos T, Harris ML, Bayless TM, Meltzer SJ, et al. Identification of microRNAs associated with ileal and colonic Crohn’s disease. Inflamm Bowel Dis. 2010;16:1729–38. doi:10.1002/ibd.21267.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nielsen BS, Jørgensen S, Fog JU, Søkilde R, Christensen IJ, Hansen U, et al. High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis. 2011;28:27–38. doi:10.1007/s10585-010-9355-7.

    Article  CAS  PubMed  Google Scholar 

  110. Lanza G, Ferracin M, Gafà R, Veronese A, Spizzo R, Pichiorri F, et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer. 2007;6:54. doi:10.1186/1476-4598-6-54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Josse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Josse, C., Bours, V. (2016). MicroRNAs and Inflammation in Colorectal Cancer. In: Slaby, O., Calin, G. (eds) Non-coding RNAs in Colorectal Cancer. Advances in Experimental Medicine and Biology, vol 937. Springer, Cham. https://doi.org/10.1007/978-3-319-42059-2_3

Download citation

Publish with us

Policies and ethics